Singapore Mathematical Society

Singapore Mathematical Olympiad (SMO) 2009

(Senior Section, Round 2 solutions)

1. Let D be the midpoint of AC. Since $\frac{CN}{NA} < 1$, N lies in the segment CD. Let G be the intersection of BD and MN. By Menelaus' Theorem applied to the line MN and triangle ABD,

$$\frac{DG}{GB} \cdot \frac{BM}{MA} \cdot \frac{AN}{ND} = 1.$$

Thus

$$\begin{split} \frac{BG}{GD} &= \frac{BM}{MA} \cdot \frac{AN}{ND} = \left(1 - \frac{CN}{NA}\right) \cdot \frac{AN}{ND} \\ &= \frac{NA - CN}{ND} = \frac{(2CD - CN) - CN}{ND} \\ &= \frac{2ND}{ND} = 2. \end{split}$$

Therefore, G is the centroid of ABC.

- **2.** We have $n^2 \equiv 1 \pmod{3}$. Thus n = 3k + 1 or 3k + 2 for some nonnegative integer k.
- (i) n=3k+1. After simplifying, we have $2^m=3k^2+2k=k(3k+2)$. Thus k and 3k+2 are both powers of 2. It is clear that k=2 is a solution and k=1 is not. If $k=2^p$, where $p\geq 2$, then $3k+2=2(3\cdot 2^{p-1}+1)$ is not a power of 2 as $3\cdot 2^{p-1}+1$ is odd. We have one solution: n=7, m=4.
- (ii) n = 3k + 2: Again we have $2^m = 3k^2 + 4k + 1 = (3k + 1)(k + 1)$ and both k + 1 and 3k + 1 must be powers of 2. Both k = 0, 1 are solutions. When k = 0, m = 0, which is not admissible. For k > 1, we have 3k + 1 = 2k + (k + 1) > 2k + 2 and therefore 4(k + 1) > 3k + 1 > 2(k + 1). Hence if $k + 1 = 2^p$ for some positive integer p, then

45

 $2^{p+2} > 3k+1 > 2^{p+1}$ and we conclude that 3k+1 cannot be a power of 2. Thus there is one solution in this case: (n,m)=(5,3).

et A be an n-element subset of $\{1, 2, \ldots, 2009\}$ with the property that the difference between any two numbers in A is not a prime number. Find the largest possible value of n. Find a set with this number of elements. (Note: 1 is not a prime number.)

- **3.** If $n \in A$, then $n + i \notin A$, i = 2, 3, 5, 7. Among n + 1, n + 4, n + 6 at most one can be in A. Thus among any 8 consecutive integers, at most 2 can be in S. Hence $|A| \le 2\lceil 2009/8 \rceil = 504$. Such a set is $\{4k + 1 : k = 0, 1, \dots, 502\}$.
- 4. We give a proof of the general case. Consider the expansion of

$$(ax_1^2 + bx_1 + c)(ax_2^2 + bx_2 + c) \cdots (ax_n^2 + bx_n + c).$$

The term in $a^i b^j c^k$, where i + j + k = n is

$$a^{i}b^{j}c^{k}[(x_{1}x_{2}\ldots x_{i})^{2}(x_{i+1}x_{i+2}\ldots x_{i+j})+\cdots].$$

There are altogether $\binom{n}{i}\binom{n-i}{j}$ terms in the summation. (We choose i factors from which we take ax_t^2 . From the remaining n-i factors, we choose j to take the terms bx_s .) By symmetry, the number of terms containing x_i^2 is a constant, as is the number of terms containing the term x_i . Thus, when the terms in the summation are multiplied together, we get $(x_1x_2...x_n)^p = 1$ for some p. (For our purpose, it is not necessary to compute p. In fact $p = 2\binom{n-1}{i-1}\binom{n-i}{j} + \binom{n-1}{j-1}\binom{n-j}{i} = \frac{2i+j}{n}\binom{n}{i}\binom{n-i}{j}$.) By the AM-GM inequality, we have

$$a^{i}b^{j}c^{k}[(x_{1}x_{2}\dots x_{i})^{2}(x_{i+1}x_{i+2}\dots x_{i+j})+\cdots] \geq a^{i}b^{j}c^{k}\binom{n}{i}\binom{n-i}{j}.$$

Hence

$$(ax_1^2 + bx_1 + c) \cdots (ax_n^2 + bx_n + c) \ge \sum_{i+j+k=n} a^i b^j c^k \binom{n}{i} \binom{n-i}{j} = (a+b+c)^n = 1.$$

5. The number of arrows that that hit zone 1 is $< 30 \cdot 16/4 = 120$. If contestant i hits zone 1 a_i times, zone 2 b_i times and miss the target c_i times, then the total score is $10a_i + 5b_i = 5a_i + 5(a_i + b_i) = 5a_i + 5(16 - c_i) = 80 + 5(a_i - c_i)$. Suppose the scores are all distinct, then the 30 numbers $a_i - c_i$ must all be distinct. By the pigeonhole principle, half of these 30 numbers are either positive or negative. We consider the "positive" case. Without loss of generality, let $a_i - c_i > 0$ for $i = 1, \ldots, 15$. Then $a_i - c_i \geq i$. Therefore $a_i \geq i$. Hence $a_1 + \cdots + a_{15} \geq 120$. But $a_1 + \cdots + a_{30} < 120$, and we have a contradiction. The "negative" case is similar.