SMO Senior 2024 Rd.2

- 1. In an acute triangle *ABC*, *AC* > *AB*, *D* is the point on *BC* such that *AD* = *AB*. Let ω_1 be the circle through *C* tangent to *AD* at *D*, and ω_2 the circle through *C* tangent to *AB* at *B*. Let *F*(\neq *C*) be the second intersection of ω_1 and ω_2 . Prove that *F* lies on *AC*.
- 2. Find all integer solutions of the equation $y^2 + 2y = x^4 + 20x^3 + 104x^2 + 40x + 2003.$
- 3. Find the smallest positive integer *n* for which there exist integers $x_1 < x_2 < \cdots < x_n$ such that every integer from 1000 to 2000 can be written as a sum of some of the integers from x_1, x_2, \dots, x_n without repetition.
- 4. Suppose *p* is a prime number and *x*, *y*, *z* are integers satisfying 0 < x < y < z < p. If x^3 , y^3 , z^3 have equal remainders when divided by *p*, prove that $x^2 + y^2 + z^2$ is divisible by x + y + z.
- 5. Let $a_1, a_2, ...$ be a sequence of positive numbers satisfying, for any positive integers k, l, m, n such that k + n = m + l,

$$\frac{a_k + a_n}{1 + a_k a_n} = \frac{a_m + a_l}{1 + a_m a_l}.$$

Show that there exist positive numbers b, c so that $b \le a_n \le c$ for any positive integer n.