Singapore Mathematical Society

Singapore Mathematical Olympiad (SMO) ²⁰¹¹

(Senior Section, Round 2 solutions)

1. There is an error in this problem. The triangle is not necessarily equilateral. In fact we shall prove that the altitude at A, the bisector of $\angle B$ and the median at C meet at a common point if and only if $\cos B = \frac{a}{a+c}$ where $BC = a$, $CA = b$ and $AB = c$.

Let D, E and F be the points on BC, CA and AB respectively such that AD is the altitude at A, BE is the bisector of $\angle B$ and CF is the median at C. Suppose that AD, BE, CF meet at a common point. The point of concurrence of AD, BE and CF must lie inside the triangle ABC . Since F is the midpoint of AB, by Ceva's theorem $CE : EA = CD : DB$. Using the angle bisector theorem, $CE : EA = a : c$. Thus $CD = a^2/(a + c)$ and $DB = ac/(a + c)$. Thus $\cos B = \frac{BD}{AB} = \frac{a}{a+c}$.

Conversely, if $\cos B = \frac{a}{a+c}$, then $\angle B$ is acute and $BD = c \cos B = ac/(a+c) < a$ so that D is within BC. Thus $\overline{DC} = a - ac/(a + c) = a^2/(a + c)$. Therefore $BD/DC = c/a$. Consequently $(AF/FB)(BD/DC)(CE/EA) = 1$. By Ceva's theorem, AD, BE and CF are concurrent.

So given a and c, the acute angle B and hence the triangle ABC is determined. If $a \neq c$, then the triangle ABC is not equilateral.

2. Yes, in fact, for any $k \in \mathbb{N}$, there is a set S_k having k elements satisfying the given condition. For $k = 1$, let S_1 be any singleton set. For $k = 2$, let $S_2 = \{2,3\}$. Suppose that $S_k = \{a_1, \ldots, a_k\}$ satisfies the given conditions. Let

$$
b_1 = a_1 a_2 \cdots a_k b_j = b_1 + a_{j-1}, \ \ 2 \le j \le k+1.
$$

Let $S_{k+1} = \{b_1, b_2, \ldots, b_{k+1}\}$. Then the fact that S_{k+1} satisfies the required property can be verified by observing that $|m - n| = (m, n)$ if and only if $(m - n)$ divides m.

3. We shall show that $n = 3$ or 7. Let $f(n) = \cos \frac{\pi}{n} \cos \frac{2\pi}{n} \cos \frac{3\pi}{n}$. One can verify that $f(1) = 1, f(2) = 0, f(3) = \frac{1}{4}, f(4) = 0, f(5) = -\cos^2 \frac{2\pi}{5} \cos \frac{\pi}{5} < 0, f(6) = 0$ and $f(8) = \frac{1}{4}$. We shall show that $f(7) = \frac{1}{8}$.

Let ABC be an isosceles triangle with $\angle A = \frac{\pi}{7}$, $\angle B = \angle C = \frac{3\pi}{7}$, $BC = 1$ and $AB = AC = x$. Let D be the point on AC such that $\angle CBD = \frac{2\pi}{7}$. Let $BD = y$. Then the triangles *BCD* and *ADB* are isosceles with $BC = CD = 1$ and $AD = BD =$ y. Thus $\cos\frac{\pi}{7} = \cos A = \frac{x}{2y}$, $\cos\frac{2\pi}{7} = \cos\angle CBD = \frac{y}{2}$, and $\cos\frac{3\pi}{7} = \cos C = \frac{1}{2x}$. Therefore, $\cos \frac{\pi}{7} \cos \frac{2\pi}{7} \cos \frac{3\pi}{7} = \frac{1}{8}$.

Lastly, let's show that $f(n) \neq \frac{1}{n+1}$ for $n \geq 9$. For $n \geq 9$, we have $0 < \frac{\pi}{n}, \frac{2\pi}{n}, \frac{3\pi}{n} < \frac{\pi}{2}$.
Since cosine is a decreasing function on $[0, \frac{\pi}{2}]$, we have $f(n)$ is an increasing function of *n* for $n \ge 9$. Consequently, $f(n) \ge f(9) > \cos^3 \frac{3\pi}{9} = \frac{1}{8} > \frac{1}{n+1}$

4. Let $a_i = \max S_i$. Without loss of generality, assume that $a_1 \leq a_i$ for all i. We shall prove by induction on k. For $k = 2$, since $S_1 \cap S_2 \neq \emptyset$, $a_1 \in S_2$. Therefore $X = \{a_1\}$ works. Now assume that the result is true for $k-1$. Let I be the collection consisting of S_1 and the sets S_i such that $S_i \cap S_1 \neq \emptyset$ and let \mathbb{J} be the collection of the other sets. Note that a_1 is contained in all the sets in I. If $|\mathbb{J}| < k - 1$, then the set X consisting of one integer from each of the sets in $\mathbb J$ together with a_1 has the desired property. Otherwise, consider a collection K of $k-1$ sets in J. K, together with S_1 , forms a collection of k sets. Among these there are two that have nonempty intersection. Since S_1 does not intersect any of the sets in J, these two sets must come from K. Thus by the induction hypothesis, there is a set X' of $k-2$ integers such that every set in J contains one integer in X'. Thus $X = X' \cup \{a_1\}$ has the desired property.

Dividing each of the numerator and denominator of LHS by $2x_1x_2, 2x_2x_3, \ldots$ 5. writing $a_1 = \frac{x_3x_4}{x_1x_2}$, $a_2 = \frac{x_4x_5}{x_2x_3}$, ..., and noting that $x_i^2 + x_{i+1}^2 \ge 2x_ix_{i+1}$, we get

$$
2 \times \text{LHS} \le \frac{1}{1 + a_1} + \frac{1}{1 + a_2} + \dots + \frac{1}{1 + a_n}.
$$

Note that $a_1 a_2 \cdots a_n = 1$. It suffices to show that

$$
\frac{a_1}{1+a_1} + \frac{a_2}{1+a_2} + \dots + \frac{a_n}{1+a_n} \ge 1
$$
\n^(*)

÷,

since it is equivalent to

$$
\frac{1}{1+a_1} + \frac{1}{1+a_2} + \dots + \frac{1}{1+a_n} \le n-1.
$$

We shall show that (*) is true for $n \geq 2$. The case $n = 2$ is obvious. We will now prove it by induction. Suppose (*) holds for $n = k$. Now assume $a_1 \cdots a_{k+1} = 1$, $a_i > 0$ for all i . To prove the inductive step, it suffices to show that

$$
\frac{a_k}{1+a_k} + \frac{a_{k+1}}{1+a_{k+1}} \ge \frac{a_ka_{k+1}}{1+a_ka_{k+1}}.
$$

which can be verified directly.

Note: This is an extension of the problem :

$$
\frac{x_1^2}{x_1^2 + x_2 x_3} + \frac{x_2^2}{x_2^2 + x_3 x_4} + \dots + \frac{x_{n-1}^2}{x_{n-1} + x_n x_1} + \frac{x_n^2}{x_n^2 + x_1 x_2} \le n - 1.
$$