Singapore Mathematical Society

Singapore Mathematical Olympiad (SMO) 2011

(Junior Section, Round 2 solutions)

1. It's equivalent to prove $x^2y^2 \ge (ac+bd)^2$ as all the numbers are nonnegative. This is true since

$$x^{2}y^{2} = (a^{2} + b^{2})(c^{2} + d^{2})$$

$$= (ac)^{2} + (bd)^{2} + a^{2}d^{2} + b^{2}c^{2}$$

$$\geq (ac)^{2} + (bd)^{2} + 2(ac)(bd) \qquad \text{AM-GM}$$

$$= (ac + bd)^{2}.$$

2. Let the tangent at P meet the tangent at R at the point S. Let O be the centre of Γ_1 . Then ORST is a square. Hence $\angle KPR = \angle RPS = 45^{\circ}$. Also $\angle NPS = \angle NKP = \angle PMS = \angle MPK$. Thus $\angle MPR = \angle RPN$.

3. Let $a_i = \max S_i$, $b_i = \min S_i$ and suppose that $t_1 = \min\{t_i\}$. For each j, if $S_1 \cap S_j \neq \emptyset$, then $a_1 \geq b_j$. Therefore $a_1 \in S_j$.

Note: Problem 4 in the Senior Section is the general version.

4. Replace 2011 by any positive odd integer n. We first show by induction that $a_m = 3^m 2^{n-m} - 1$ for m = 0, 1, ..., n-1. This is certainly true for m = 0. Suppose it's true for some m < n-1. Then $3a_m + 1 = 3^{m+1} 2^{n-m} - 2$. Since n - m > 1, the odd part is $3^{m+1} 2^{n-m-1} - 1$ which is a_{m+1} . Now $a_{n-1} = 3^{n-1} 2^1 - 1$. Thus

20

 $3a_{n-1} + 1 = 3^n 2 - 2 = 2(3^n - 1)$. When n is odd, $3^n \equiv -1 \pmod{4}$. Thus $4 \nmid 3^n - 1$. Hence the odd part of $2(3^n - 1)$ is $\frac{3^n - 1}{2}$ and this is the value of a_n .

5. Suppose the number of times that operations (i), (ii) and (iii) have been performed are x, y and z, respectively. Then the number of 1, 10 and 25 are y-x, 1+x-y+2z and y-z, respectively, with -x+y=100. Thus the sum is

$$S = y - x + 10(1 + x - y + 2z) + 25(y - z) = -890 + 5(5y - z).$$

Since we want the minimum values of S, y has to be as small as possible and z as large as possible. Since

$$y-x = 100, \ 1+x-y+2z \ge 0, \quad y-z \ge 0$$

we get, from the first equation, $y \ge 100$, from the second inequality, $2z \ge 99$ or $z \ge 50$ and $y \ge z$ from the third. Thus the minimum is achieved when y = 100, x = 0 and z = 100. Thus minimum S = 1100.