

## 2015 World Mathematics Team Championship Intermediate Level Relay Round Solutions

| Problems | 1A | 1 <b>B</b>  | 2A  | 2B  | <b>3A</b> | <b>3B</b> |
|----------|----|-------------|-----|-----|-----------|-----------|
| Answers  | 2  | $2\sqrt{3}$ | 540 | 395 | 89        | 109       |

**1A.** If  $\frac{a}{b} = \frac{c}{d} = 2$ , find  $\frac{3a-c}{3b-d}$ .

**Solution: 2.** Since  $\frac{a}{b} = \frac{c}{d} = 2$ , so a = 2b and c = 2d. Substitute these into  $\frac{3a-c}{3b-d} = \frac{3 \times 2b - 2d}{3b-d} = 2$ .

**1B.** Let T = TNYWR (The Number You Will Receive). Let a, b, and c be the sides that are opposite to angles A, B, and C, respectively, of  $\triangle ABC$ . If  $\frac{a}{b} = \frac{a+b}{a+b+c}$ ,  $\angle A = 30^\circ$ , and a = T, find the area of  $\triangle ABC$ .

**Solution:**  $2\sqrt{3}$ . As shown in the figure on the right, extend *CB* to *D* so that BD = AB = c. Connect *AD*. Since  $\frac{a}{b} = \frac{a+b}{a+b+c}$ , so  $\frac{BC}{AC} = \frac{a}{b} = \frac{b}{a+c} = \frac{AC}{CD}$ . Since  $\angle C$  is the common angle for  $\triangle ABC$  and  $\triangle DAC$ , so  $\triangle ABC \sim \triangle DAC$  and that means  $\angle BAC = \angle D$ . Also,  $\angle BAD = \angle D$  and  $\angle BAC = 30^{\circ}$ , so  $\angle ABC = \angle D + \angle BAD = 2\angle D = 2\angle BAC = 60^{\circ}$  and  $\angle C = 90^{\circ}$  which means  $\triangle ABC$  is a right triangle. Since T = 2 = a, so  $b = 2\sqrt{3}$  and the area of right triangle  $\triangle ABC$  is  $S_{\triangle ABC} = \frac{1}{2}ab = \frac{1}{2} \times 2 \times 2\sqrt{3} = 2\sqrt{3}$ . **2A.** As shown in the figure below, let  $\angle A + \angle B + \angle C + \angle D + \angle E + \angle F + \angle G = x^{\circ}$ . Find *x*.



**Solution: 540°.** As shown in the figure below, let M be the intersection point of CE and DG. Connect CD.



Because  $\angle A + \angle B + \angle BCD + \angle CDA = 360^\circ$ ,  $\angle A + \angle B + \angle BCE + \angle 1 + \angle 2 + \angle GDA = 360^\circ$ . (1) Also,  $\angle E + \angle F + \angle G + \angle GME = 360^\circ$ , (2) and  $\angle 1 + \angle 2 + \angle GME = \angle 1 + \angle 2 + \angle CMD = 180^\circ$ . (3) Hence (1)+(2)-(3) =  $(\angle A + \angle B + \angle BCE + \angle 1 + \angle 2 + \angle GDA) + (\angle E + \angle F + \angle G + \angle GME) - (\angle 1 + \angle 2 + \angle GME)$  $= \angle A + \angle B + \angle BCE + \angle GDA + \angle E + \angle F + \angle G = 360^\circ + 360^\circ - 180^\circ = 540^\circ$ .

**2B.** Let T = TNYWR (The Number You Will Receive). Suppose x and y are integers that satisfy the set of equations  $\begin{cases} x + 3y^2 + 2xy = 18, & (1) \\ y + 3x^2 + 4xy = 6, & (2) \end{cases}$ 

Find the value for  $T_{\times}(x+y) + 2015$ .

**Solution: 395.** From (1+2), we have  $x + 3y^2 + 2xy + y + 3x^2 + 4xy = 24$  or  $x + y + 3(x^2 + y^2) + 6xy = (x + y) + 3(x^2 + y^2 + 2xy) = (x + y) + 3(x + y)^2 = 24$  or  $[3(x + y) - 8] \cdot [(x + y) + 3] = 0$  or  $(x + y) = \frac{8}{3}$  or -3.

Since x and y are integers, x+y is also integer and (x+y) must be -3. Therefore,  $T \times (x+y) + 2015 = 540 \times (-3) + 2015 = 395$ .

- **3A.** The cube of a natural number can be written as the sum of two or more consecutive odd numbers. For examples,  $2^3 = 3+5$ ,  $3^3 = 7+9+11$ , and  $4^3 = 13+15+17+19$ . If  $9^3$  is written as the sum of two or more consecutive odd numbers, what is the largest odd number in this sum?
  - **Solution: 89.** From observation,  $2^3$  can be written as sum of two consecutive odd numbers of 3 and 5,  $3^3$  can be written as sum of three consecutive odd numbers of 7, 9, and 11, and  $4^3$  can be written as sum of four consecutive numbers of 13, 15, 17, and 19. So, we should be able to write  $9^3$  as sum of 9 consecutive odd numbers with the first odd number being the (2+3+4+5+6+7+8+1)th = 36th odd number starting with 3 and the largest or the last odd number being the (35+9)th = 44th odd numbers starting with 3. Therefore, the largest odd number in the 9 odd numbers that sum up to  $9^3$  is  $2 \times 44+1=89$ .
- **3B.** Let T = TNYWR (The Number You Will Receive). Suppose *p* and *q* are nonzero natural numbers and that p < q. If  $\frac{p}{q} = 0.18\cdots$  and q = 110, find (p + T). **Solution: 109.** Since  $\frac{p}{q} = 0.18\cdots$ ,  $0.18 < \frac{p}{q} < 0.19$  or  $\frac{18}{100} < \frac{p}{q} < \frac{19}{100}$  or  $\frac{18}{100} < \frac{p}{110} < \frac{19}{100}$  or 19.8 .*p*is a natural number so <math>p = 20. Therefore, p + T = 20 + 89 = 109.