SMO Open 2024 Rd.2

Question 1

In triangle ABC, $\angle B=90^\circ$, AB>BC, and P is the point such that BP=PC and $\angle APB=90^\circ$ where P and C lie on the same side of AB. Let Q be the point on AB such that AP=AQ, and let M be the midpoint of QC. Prove that the line through M parallel to AP passes through the midpoint of AB.

Question 2

Find the minimum value of

$$\frac{x_1^3 + \dots + x_n^3}{x_1 + \dots + x_n}$$

where x_1, x_2, \ldots, x_n are distinct positive integers.

Question 3

Prove that for every positive integer n, there is a unique n-digit integer A(n) which is a multiple of 5^n and whose digits are all odd.

Question 4

Alice and Bob play a game. Bob starts by picking a set S consisting of M vectors of length n with entries either 0 or 1. Alice picks a sequence of numbers $y_1 \leq y_2 \leq \cdots \leq y_n$ from the interval [0,1], and a choice of real numbers $x_1,\ldots,x_n \in \mathbb{R}$. Bob wins if he can pick a vector $(z_1,\ldots,z_n) \in S$ such that

$$\sum_{i=1}^n x_i y_i \leq \sum_{i=1}^n x_i z_i,$$

otherwise Alice wins. Determine the minimum value of ${\cal M}$ so that Bob can guarantee a win.

Question 5

Let p be a prime number. Determine the largest possible n such that the following holds. It is possible to fill an $n \times n$ table with integers a_{ik} in the i-th row and k-th column, for $1 \le i, k \le n$, such that for any quadruple i, j, k, l with $1 \le i < j \le n$ and $1 \le k < l \le n$, the number $a_{ik}a_{jl} - a_{il}a_{jk}$ is not divisible by p.