Singapore Mathematical Society

Singapore Mathematical Olympiad (SMO) 2022

Senior Section (Round 1)

Wednesday, 1 June 2022

0930 - 1200 hrs

Instructions to contestants

- 1. Answer ALL 25 questions.
- 2. Enter your answers on the answer sheet provided.
- 3. For the multiple choice questions, enter your answer on the answer sheet by shading the bubble containing the letter (A, B, C, D or E) corresponding to the correct answer.
- 4. For the other short questions, write your answer on the answer sheet and shade the appropriate bubble below your answer.
- 5. No steps are needed to justify your answers.
- 6. Each question carries 1 mark.
- 7. No calculators are allowed.

PLEASE DO NOT TURN OVER UNTIL YOU ARE TOLD TO DO SO.

Co-organizer Department of Mathematics, NUS

Sponsored by Micron

1

Multiple Choice Questions

- 1. Suppose the roots of $\frac{x^2}{2} + mx + n = 0$ are $\frac{m}{2}$ and $\frac{n}{3}$. Find the smallest value of mn.
 - (A) -1080 (B) -90 (C) 0 (D) 90 (E) 1080
- 2. Which of the following is true?

(A)
$$\sqrt[6]{\frac{1}{333}} < \sqrt[3]{\frac{1}{18}} < \sqrt{\frac{1}{7}}$$
 (B) $\sqrt[3]{\frac{1}{18}} < \sqrt[6]{\frac{1}{333}} < \sqrt{\frac{1}{7}}$ (C) $\sqrt[3]{\frac{1}{18}} < \sqrt{\frac{1}{7}} < \sqrt[6]{\frac{1}{333}}$
(D) $\sqrt{\frac{1}{7}} < \sqrt[6]{\frac{1}{333}} < \sqrt[3]{\frac{1}{18}}$ (E) None of the above.

3. Suppose $\sqrt{(\log_{377\times377} 2022)(\log_{377} 2022)} = \log_k 2022$. Find k.

- (A) $\sqrt{337}$ (B) $337^{\sqrt{2}}$ (C) $337\sqrt{2}$ (D) $\sqrt{337}^{\sqrt{2}}$ (E) $\sqrt{337 \times 2}$
- 4. Suppose $y = \cos^2 x 7\cos x + 25$, where x is any real number. Find the range of y.
 - (A) $17 \le y \le 33$ (B) $18 \le y \le 33$ (C) $19 \le y \le 33$ (D) $20 \le y \le 33$ (E) None of the above

5. Suppose
$$\sin(180^\circ + x) = -\frac{7}{9}$$
, where $450^\circ < x < 540^\circ$. Find $\sin(2x)$.
(A) $\frac{49}{81}\sqrt{2}$ (B) $\frac{56}{81}\sqrt{2}$ (C) $-\frac{56}{81}$ (D) $-\frac{49}{81}\sqrt{2}$ (E) $-\frac{56}{81}\sqrt{2}$

Short Questions

6. Find the value of

$$\left(\frac{\cos 10^\circ + \cos 50^\circ + \cos 70^\circ + \cos 110^\circ}{\cos 20^\circ}\right)^8.$$

7. Suppose $x^{20} + \frac{x^{10}}{2} - \frac{3^{2x}}{9} + \frac{1}{16} = 0$ for some positive real number x. Find the value of $4 \cdot 3^x - 12x^{10}$.

8. How many positive integers less than or equal to 2022 cannot be expressed as

$$\lfloor 2x+1
floor+ \lfloor 5x+1
floor$$

for some real number x? Here, $\lfloor x \rfloor$ denotes the greatest integer less than or equal to x. For example, $\lfloor -2.1 \rfloor = -3$, $\lfloor 3.9 \rfloor = 3$.

9. Suppose

$$y = \frac{\tan^2 x - \tan x + \sqrt{33}}{\tan^2 x + \tan x + 1},$$

where $-90^{\circ} < x < 90^{\circ}$. Find the maximum possible value of $\sqrt{33}(y-5)$.

10. In the figure below, PQRS is a square inscribed in a circle. Let W be a point on the arc PQ such that $WS = \sqrt{20}$. Find $(WP + WR)^2$.

11. The figure below shows a quadrilateral ABCD such that AC = BD and P and Q are the midpoints of the sides AD and BC respectively. The lines PQ and AC meet at R and the lines BD and AC meet at S. If $\angle PRC = 130^{\circ}$, find the angle $\angle DSC$ (in °).

- 12. How many distinct terms are there if $(x^2 + y^2)^{11}(x^{11} + y^{11})^9$ is algebraically expanded and simplified?
- 13. If $\sqrt{x^2 + 7x 4} + \sqrt{x^2 x + 4} = x 1$, find the value of $3x^2 + 14x$.
- 14. Let $k = -1 + \sqrt{2022^{1/5} 1}$, and let $f(x) = (k^2 + 2k + 2)^{10x}$. Find the value of $\log_{2022} f(2022)$.
- 15. Find the smallest odd integer N, where N > 2022, such that when 1808, 2022 and N are each divided by a positive integer p, where p > 1, they all leave the same remainder.

- 16. If $\frac{12}{x} + \frac{48}{y} = 1$, where x and y are positive real numbers, find the smallest possible value of x + y.
- 17. Find the largest value of 40x + 60y if $x y \le 2$, $5x + y \ge 5$ and $5x + 3y \le 15$.
- 18. Suppose

$$\cos x - \cos y = \frac{1}{2},$$

$$\sin x - \sin y = -\frac{1}{3}$$

If $sin(x + y) = \frac{m}{n}$, where $\frac{m}{n}$ is expressed as a fraction in its lowest terms, find the value of m + n.

- 19. For some positive integer n, the number $n^3 3n^2 + 3n$ has a units digit of 6. Find the product of the last two digits of the number $7(n-1)^{12} + 1$.
- 20. Find the largest positive integer n for which $\frac{20n+2020}{3n-6}$ is a positive integer.
- 21. In the xy-coordinate system, there are two circles passing through the point $(11, 3\sqrt{3})$, and each of these circles is tangent to both the x-axis and the line $y = \sqrt{3}x$. Let S be the sum of the radii of the two circles. Find $\sqrt{3}S$.
- 22. Let P and Q be the points $(20(\sqrt{5}-1), 0)$ and $(0, 10(\sqrt{5}-1))$ on the xy-plane. Let R be the point (a, b). If $\angle PRQ$ is a right angle, find the maximum possible value of b.
- 23. How many positive integers n do not satisfy the inequality

$$n^{\frac{1}{3}\log_{20}n} > \sqrt{n}$$
 ?

24. Let f(x) be a function such that

$$3f(x^2) + f(13 - 4x) = 3x^2 - 4x + 293$$

for all real number x. Find the value of f(1).

25. Find the largest positive integer M such that

$$\cos^2 x - \sin^2 x + \sin x = \frac{M}{888}$$

has a real solution.