Solutions

1. Answer: (D) .

The original values are $2100 \div 120\% = 1750$ and $2100 \div 80\% = 2625$ respectively. Then the profit is

$$
1750 + 2625 - 2 \times 2100 = -175.
$$

2. Answer: (D) .

If $x + 2013 = 0$, then $x = -2013$. Suppose $x + 2013 \neq 0$. Then $x^3 - x - 1 = \pm 1$.

If $x^3 - x - 1 = 1$, there is no integer solution; if $x^3 - x - 1 = -1$, then $x = 0, 1, -1$. Since $x + 2013$ is even, $x = 1$ or $x = -1$.

3. Answer: (E).

(A) and (B) are the reflections with respect to $y = x$ and $y = -x$ respectively; (C) and (D) are the rotations about the origin by 90° and -90° respectively.

4. Answer: (A) .

For any positive integer n ,

$$
2013^{n} - 1803^{n} - 1781^{n} + 1774^{n} = (2013^{n} - 1803^{n}) - (1781^{n} - 1774^{n})
$$

$$
= (2013 - 1803)u - (1781 - 1774)v = 210u - 7v,
$$

$$
2013^{n} - 1803^{n} - 1781^{n} + 1774^{n} = (2013^{n} - 1781^{n}) - (1803^{n} - 1774^{n})
$$

$$
= (2013 - 1781)x - (1803 - 1774)y = 29x - 29y.
$$

So $2013^n - 1803^n - 1781^n + 1774^n$ is divisible by $7 \times 29 = 203$ for every positive integer n.

5. Answer: (C) .

Rewrite the equation as

$$
xy^{2} + y^{2} - x - y = (y - 1)(x(y + 1) + y) = n.
$$

If $n = 0$, then there are infinitely many integer solutions. Suppose $n \neq 0$, and the equation has infinitely many integer solutions. Then there exists a divisor k of n such that $y - 1 = k$ and $x(y+1) + y = n/k$ for infinitely many x. It forces $y + 1 = 0$, i.e., $y = -1$. Then $n = 2$.

6. Answer: (E) .

Let $k = \sin \theta \cos \theta$. Then

$$
\frac{13}{36} = \left(\frac{1}{\sin \theta} - \frac{1}{\cos \theta}\right)^2 = \frac{1 - 2\sin \theta \cos \theta}{(\sin \theta \cos \theta)^2} = \frac{1 - 2k}{k^2}
$$

Solve the equation: $k = 6/13$ ($k = -6$ is rejected). Then $\sin 2\theta = 2k = 12/13$ and

$$
\cot \theta - \tan \theta = \frac{\cos^2 \theta - \sin^2 \theta}{\sin \theta \cos \theta} = \frac{\cos 2\theta}{\frac{1}{2} \sin 2\theta} = \frac{5/13}{6/13} = \frac{5}{6}.
$$

7. Answer: (A) .

Let $\angle AOB = \alpha$ and $\angle ADO = \beta$. Then $\frac{1}{2}(\alpha + 3\alpha) = 2\beta$; that is, $\alpha = \beta$. Given that

$$
\frac{5}{2} = \frac{\sin(3\alpha/2)}{\sin(\alpha/2)} = \frac{3\sin(\alpha/2) - 4\sin^3(\alpha/2)}{\sin(\alpha/2)} = 3 - 4\sin^2(\alpha/2).
$$

Then $\sin^2(\alpha/2) = \frac{1}{8}$. Hence, $\frac{S_{\triangle BOC}}{S_{\triangle AOB}} = \frac{\sin(\pi - 2\alpha)}{\sin \alpha} = 2\cos \alpha = 2(1 - 2\sin^2(\alpha/2)) = \frac{3}{2}.$

8. Answer: (C).

Let the side of the square be 2. Then the radius of the circle is $\sqrt{2}$. Let $\theta = \angle XOY$. So

$$
\tan(\theta/2) = \frac{MY}{MO} = MY = PM \tan 30^{\circ} = \frac{\sqrt{2} - 1}{\sqrt{3}}
$$

Then

$$
\tan \theta = \frac{2 \tan(\theta/2)}{1 - \tan^2(\theta/2)} = \frac{\sqrt{6} - \sqrt{3}}{\sqrt{2}}.
$$

9. Answer: (E).

Let x and y denote the numbers of hours after 2:00p.m. that the first and the second person visits the swimming pool, respectively. Then

So the chance that they meet is $\frac{5/2}{9/2} = \frac{5}{9}$.

10. Answer: (D).

Let P and P' be the projections of O and O' on AB respectively. Then

$$
PP' = AP - AP' = \frac{1}{2}AB - \frac{1}{2}AB' = \frac{1}{2}(AB - AB') = \frac{1}{2}BB'.
$$

Similarly, let Q and Q' be the projections of O and O' on AC respectively, then $QQ' = \frac{1}{2}CC'$.

$$
\sin \angle O'OP = \frac{PP'}{OO'} = \frac{QQ'}{OO'} = \sin \angle O'OQ \Rightarrow \angle O'OP = \angle O'OQ.
$$

So $\angle AB''C'' = \angle AC''B''$. It follows that $AB'' = AC''$.

11. Answer: 8000.

$$
\tan \alpha = 4 \tan \beta = \frac{4}{\tan \alpha} \Rightarrow \tan \alpha = 2.
$$
 The two legs are $\frac{200}{\sqrt{5}}$ and $\frac{400}{\sqrt{5}}$ respectively.
Area = $\frac{1}{2} \times \frac{200}{\sqrt{5}} \times \frac{400}{\sqrt{5}} = 8000.$

12. Answer: 595.

Let
$$
f(x) = \frac{1+10x}{10-100x}
$$
. Then $f^2(x) = -\frac{1}{100x}$, $f^3(x) = \frac{1-10x}{10+100x}$ and $f^4(x) = x$. Then
\n
$$
f\left(\frac{1}{2}\right) + f^2\left(\frac{1}{2}\right) + \dots + f^{6000}\left(\frac{1}{2}\right) = 1500\left[f\left(\frac{1}{2}\right) + f^2\left(\frac{1}{2}\right) + f^2\left(\frac{1}{2}\right) + f^4\left(\frac{1}{2}\right)\right]
$$
\n
$$
= 1500\left(-\frac{3}{10}-\frac{1}{50}+\frac{1}{15}+\frac{1}{2}\right) = 595.
$$

13. Answer: 6.

Since $\angle A = \angle D$ and $\angle C = \angle B$, the triangles $\triangle ACP$ and $\triangle DBP$ are similar. Then

$$
\frac{DP}{BP} = \frac{AP}{CP} \Rightarrow DP = \frac{AP}{CP} \times BP = \frac{2}{1} \times 3 = 6.
$$

14. Answer: 80.

The region S is the hexagon enclosed by the lines

$$
x = \pm 10
$$
, $y = \pm 10$, $x + \frac{1}{2}y = \pm 10$.

The largest circle contained in S is tangent to $x + \frac{1}{2}y = \pm 10$. Hence, its radius is the distance from the origin (0,0) to $x + \frac{1}{2}y = 10$:

$$
r = \frac{10}{\sqrt{1 + (1/2)^2}} = 4\sqrt{5}.
$$

The area of the largest circle is thus $\pi r^2 = \pi (4\sqrt{5})^2 = 80\pi$.

15. Answer: 10.

Let
$$
x_1 = \sqrt[3]{17 - \frac{27}{4}\sqrt{6}}
$$
 and $x_2 = \sqrt[3]{17 + \frac{27}{4}\sqrt{6}}$. Then
\n
$$
b = x_1 x_2 = \sqrt[3]{\left(17 - \frac{27}{4}\sqrt{6}\right)\left(17 + \frac{27}{4}\sqrt{6}\right)} = \sqrt[3]{\frac{125}{8}} = \frac{5}{2},
$$
\n
$$
a^3 = (x_1 + x_2)^3 = x_1^3 + x_2^3 + 3x_1x_2(x_1 + x_2)
$$
\n
$$
= \left(17 - \frac{27}{4}\sqrt{6}\right) + \left(17 + \frac{27}{4}\sqrt{6}\right) + 3ab = 34 + \frac{15}{2}a.
$$

Then $a = 4$ and thus $ab = 10$.

16. Answer: 101.

Case 1: $n < 1000$. Write $n = \overline{abc}$. Then

$$
a+b+c=9, \qquad a,b,c \in \{0,1,\ldots,9\}.
$$

Case 2: $1000 \le n < 2000$. Write $n = \overline{1abc}$. Then

$$
a+b+c=8, \qquad a,b,c \in \{0,1,\ldots,8\}.
$$

Case 3: $2000 \le n \le 2013$. Then $n = 2007$.

Therefore, there are $\binom{9+3-1}{9} + \binom{8+3-1}{8} + 1 = 55 + 45 + 1 = 101$ such numbers.

17. Answer: 10001.

Let $n = 0$. Since $p(m) - 1 | m^2$ for all m, $\deg p(x) \le 2$. Let $p(x) = ax^2 + bx + c$. Then

$$
\frac{p(m) - p(n)}{m - n} = \frac{a(m^2 - n^2) + b(m - n)}{m - n} = a(m + n) + b
$$

divides $m + n$. If $a \neq 0$, then $a = \pm 1$ and $b = 0$; if $a = 0$, then $b = \pm 1$. Thus

$$
p(x) = \pm x^2 + c, \ \pm x + c, \ c
$$

Since $p(0) = 1$ and $p(1) = 2$, we have $p(x) = x^2 + 1$ or $p(x) = x + 1$. The largest possible value of $p(100)$ is $100^2 + 1 = 10001$.

18. Answer: 31.

Let
$$
k = \frac{b^3 - a^3}{a^2b} = \left(\frac{b}{a}\right)^2 - \frac{a}{b}
$$
. Then

$$
\left(\frac{a}{b}\right)^3 + k\left(\frac{a}{b}\right)^2 - 1 = 0.
$$

The only possible positive rational solution of $x^3 + kx^2 - 1 = 0$ is $x = 1$; namely, $a = b$. Conversely, if $a = b$, then it is obvious that $a^2b|(b^3 - a^3)$.

Then $2013 > a^2 + b^2 = 2a^2$ implies $a \le 31$.

19. Answer: 0.

Let $y = -x$. Then $g(f(0)) = f(x)$ for all x. This shows that f is a constant function; namely $f(x) = c$ for some c. So that $g(c) = g(f(0)) = f(x) = c$. For all x, y , we have

$$
(x+y)g(y) = g(f(x+y)) - f(x) = g(c) - c = 0.
$$

Since $x + y$ is arbitrary, we must have $g(y) = 0$ for all y. Hence,

$$
g(0) + g(1) + \cdots + g(2013) = 0.
$$

20. Answer: 36.

Let x, y and z denote the numbers of chocolate, licorice stick and lolly, respectively. Then

$$
x + 0.5y + 0.4z = 10.
$$

For each $k = 0, ..., 10$, consider $0.5y + 0.4z = k$, i.e., $5y + 4z = 10k$. Then

$$
2|y
$$
 and $5|z$.

Set $y = 2s$ and $z = 5t$. Then $10s + 20t = 10k$, i.e., $s + 2t = k$. Then $t = 0, ..., \lfloor k/2 \rfloor$. So there are $|k/2| + 1$ ways to use k dollars. The total number of ways is

$$
\sum_{k=0}^{10} (\lfloor k/2 \rfloor + 1) = 1 + 1 + 2 + 2 + \dots + 5 + 5 + 6 = 36
$$

21. Answer: 81.

Suppose $f(f(f(n))) = n$ for all n. For some $k \in \{0, 1, 2\}$, there exist distinct $a_i, b_i, c_i, i \leq k$, such that $f(a_i) = b_i$, $f(b_i) = c_i$ and $f(c_i) = a_i$ and $f(n) = n$ if $n \neq a_i, b_i, c_i$. So the total number of required functions is

$$
\binom{6}{6} + \binom{6}{3} \times 2 + \frac{1}{2} \times \binom{6}{3} \binom{3}{3} \times 2^2 = 81.
$$

22. Answer: 287.

A triangle can be formed using $3, 4, 5$ or 6 vertices.

So the total number is

$$
\binom{7}{6} + 5 \times \binom{7}{5} + 2 \times 2 \times \binom{7}{4} + \binom{7}{3} = 287.
$$

23. Answer: 66.

Let $n \geq 2$ be an integer, and let S_n denote the number of ways to paint n seats a_1, \ldots, a_n as described, but with a_1 painted red. Consider S_{n+2} where $n \geq 2$.

Case 1: a_3 is painted red. Then there are 2 choices for a_2 . Thus, the total number of ways for this case is $2S_n$.

Case 2: a_3 is not painted red. Since the colour of a_2 is uniquely determined by the colour of a_3 , this is equivalent to the case when there are $(n+1)$ seats. The total number of ways for this case is S_{n+1} .

We conclude that $S_{n+2} = S_{n+1} + 2S_n$. It is clear that $S_2 = S_3 = 2$. Then $S_4 = 6$, $S_5 = 10$ and $S_6 = 22$. So the required number of ways is $3 \times 22 = 66$.

24. Answer: 343.

Apply the law of cosine on $\triangle XBY$ and $\triangle XCZ$ respectively:

$$
p2 = 62 + (30 - p)2 - 6(30 - p),
$$

$$
q2 = 242 + (30 - q)2 - 24(30 - q).
$$

Then $p = 14$ and $q = 21$. Applying the law of cosine in $\triangle YXZ$ again to obtain

$$
k = r2 = p2 + q2 - pq = 142 + 212 - 14 \cdot 21 = 343.
$$

25. Answer: 40.

Let R be the radius of C_3 . Then

$$
(360 - R)^2 + 360^2 = (360 + R)^2 \Rightarrow R = 90.
$$

Let r be the radius of C_4 . Then

$$
\sqrt{(360+r)^2 - (360-r)^2} + \sqrt{(90+r)^2 - (90-r)^2} = 360 \Rightarrow r = 40
$$

26. Answer: 181.

Since $\{x\} + \{x^2\} = 1$, $x + x^2 = n$ for some integer *n*. Then

$$
x = \frac{-1 \pm \sqrt{1 + 4n}}{2}
$$

 $\frac{-1+\sqrt{1+4n}}{2} \le 10$ gives $0 \le n \le 110$; $\frac{-1-\sqrt{1+4n}}{2} \ge -10$ implies $0 \le n \le 90$. If $\{x\} + \{x^2\} \neq 1$, then $\{x\} + \{x^2\} = 0$, which happens only if x is an integer between -10 to 10. So the total number of solutions to $\{x\} + \{x^2\} = 1$ is $111 + 91 - 21 = 181$.

27. Answer: 2040

Let $\alpha = \frac{3+\sqrt{17}}{2}$ and $\beta = \frac{3-\sqrt{17}}{2}$. Then $\alpha\beta = -2$ and $\alpha + \beta = 3$. Set $S_n = \alpha^n + \beta^n$. Then

$$
3S_{n+1} + 2S_n = (\alpha + \beta)(\alpha^{n+1} + \beta^{n+2}) - \alpha\beta(\alpha^n + \beta^n)
$$

= $\alpha^{n+2} - \beta^{n+2} = S_{n+2}$.

Note that $|\beta| < 1$. Then for even positive integer n, $\lfloor \alpha^n \rfloor = S_n + \lfloor -\beta^n \rfloor = S_n - 1$. Since $S_0 = 2$ and $S_1 = 3$, we can proceed to evaluate that $S_6 = 2041$.

28. Answer: 300.

The area is $12 \times \frac{1}{2} \times 10^2 \times \sin 30^\circ = 300$.

29. Answer: 500.

Let the length and the height of the box be a and h, respectively. Note that $a + 2\sqrt{3} h = 30$. Then the volume of the box is

$$
\frac{\sqrt{3}a^2}{4}h = \frac{1}{2}\left(\frac{a}{2}\cdot\frac{a}{2}\cdot2\sqrt{3}h\right) \le \frac{1}{2}\left(\frac{a+2\sqrt{3}h}{3}\right)^3 = \frac{1}{2}\times 10^3 = 500.
$$

The equality holds if $a/2 = 2\sqrt{3}h$, i.e., $a = 20$ and $h = 5/\sqrt{3}$.

30. Answer: 300.

Let the radius of the *i*th hemisphere be r_i metre $(r_0 = 1)$. Set $h_i = \sqrt{r_{i-1}^2 - r_i^2}$.

By Cauchy inequality,

$$
\left(\sqrt{r_0^2 - r_1^2} + \sqrt{r_1^2 - r_2^2} + \sqrt{r_2^2 - r_3^2} + r_3\right)^2 \le 4(r_0^2 - r_1^2 + r_1^2 - r_2^2 + r_2^2 - r_3^2 + r_3^2)
$$

$$
= 4r_0^2 = 4.
$$

The total height $h \le r_0 + \sqrt{r_0^2 - r_1^2} + \sqrt{r_1^2 - r_2^2} + \sqrt{r_2^2 - r_3^2} + r_3 \le 1 + \sqrt{4} = 3 \,\text{m} = 300 \,\text{cm}$. The equality holds if $r_i = \frac{\sqrt{4-i}}{2}$, $i = 0, 1, 2, 3$.

31. Answer: 5.

It is clear that $|x|, |y|, |z| \leq 1$. Note that

$$
0 = x + y + z - x2 - y2 - z2 = x(1 - x) + y(1 - y) + z(1 - z)
$$

Without loss of generality, assume that $z \leq 0$. Then $x = (1 - y) + (-z) \geq 0$ and similarly $y \geq 0$. Since

$$
1 - z2 = x2 + y2 \ge \frac{(x + y)2}{2} = \frac{(1 - z)2}{2},
$$

we have $-1/3 \le z \le 0$. On the other hand,

$$
x^{3} + y^{3} + z^{3} = (x + y) \left[\frac{3(x^{2} + y^{2}) - (x + y)^{2}}{2} \right] + z^{3}
$$

$$
= (1 - z) \left[\frac{3(1 - z^{2}) - (1 - z)^{2}}{2} \right] + z^{3} = 1 - 3z^{2} + 3z^{3}
$$

increases as z increases. The minimum $m = 5/9$ is obtained at $z = -1/3$ and $x = y = 2/3$.

32. Answer: 4800.

Let S_n denote the area of the region obtained in the *n*th step. Then $S_0 = 25\sqrt{3}$ and $S_n - S_{n-1} = \frac{3}{4} \left(\frac{4}{9} \right)^n S_0$ for all $n \ge 1$. Then

$$
S_n = S_0 + \frac{3}{4} \left[\frac{4}{9} + \left(\frac{4}{9} \right)^2 + \dots + \left(\frac{4}{9} \right)^n \right] S_0
$$

= $S_0 \left[1 + \frac{3}{4} \cdot \frac{4}{9} \cdot \frac{1 - (4/9)^n}{1 - 4/9} \right] = 25\sqrt{3} \left[\frac{8}{5} - \frac{3}{5} \left(\frac{4}{9} \right)^n \right].$

As *n* increases, S_n tends to $S = 25\sqrt{3} \cdot \frac{8}{5} = 40\sqrt{3}$. So $S^2 = 4800$.

33. Answer: 60024.

Let
$$
x = \frac{1}{2013^{1000}}
$$
. Then
\n
$$
xn! = a_1 n! + a_2 \frac{n!}{2!} + \dots + a_{n-1} \frac{n!}{(n-1)!} + a_n \frac{n!}{n!},
$$
\n
$$
x(n-1)! = a_1 (n-1)! + a_2 \frac{(n-1)!}{2!} + \dots + a_{n-1} \frac{(n-1)!}{(n-1)!} + \frac{a_n}{n}
$$

So *n* is the smallest integer such that *n!x* is an integer, i.e., 2013¹⁰⁰⁰ | *n*!, or equivalently 61^{1000} | $\it nl$ because 61 is the largest prime divisor of 2013.

Since
$$
\left\lfloor \frac{1000}{61} \right\rfloor = 16
$$
, $n = (1000 - 16) \times 61 = 60024$

34. Answer: 4.

Let a, b, c be fixed. Set $f(x) = ax^2 + bx + c$. Then

$$
f(-1) = a - b + c
$$
, $f(0) = c$, $f(1) = a + b + c$.

Solve the system to get

$$
a = \frac{1}{2}f(-1) - f(0) + \frac{1}{2}f(1), \qquad b = -\frac{1}{2}f(-1) + \frac{1}{2}f(1).
$$

Suppose $|f(x)| \leq 1$ for all $|x| \leq 1$. Then

$$
|2ax + b| = \left| \left(x - \frac{1}{2} \right) f(-1) - 2f(0)x + \left(x + \frac{1}{2} \right) f(1) \right|
$$

\n
$$
\leq \left| x - \frac{1}{2} \right| + 2|x| + \left| x + \frac{1}{2} \right|
$$

\n
$$
\leq \left| x - \frac{1}{2} \right| + \left| x + \frac{1}{2} \right| + 2 \leq 4.
$$

Moreover, $|2x^2 - 1| \le 1$ whenever $|x| \le 1$, and $|2x| = 4$ is achieved at $x = \pm 1$.

35. Answer: 81.

Let E_k denote the expected number of steps it takes to go from $k-1$ to $k, k = 2, ..., 100$. Then $E_{k+1} = \frac{1}{2}(1 + E_k + E_{k+1}) + \frac{1}{2}$, which implies $E_{k+1} = E_k + 2$. It is clear that $E_2 = 1$. Then $E_3 = 3, E_4 = 5, ..., E_{10} = 17$. So

$$
E = E_2 + E_3 + \cdots + E_{10} = 1 + 3 + \cdots + 17 = 81.
$$