Singapore Mathematical Society

Singapore Mathematical Olympiad (SMO) 2007

(Open Section, Round 2)

Saturday, 30 June 2007

0930-1230

Instructions to contestants

- 1. Answer ALL 5 questions.
- 2. Show all the steps in your working.
- 3. Each question carries 10 mark.
- 4. No calculators are allowed.
- 1. Let a_1, a_2, \ldots, a_n be n real numbers whose squares sum to 1. Prove that for any integer $k \geq 2$, there exists n integers x_1, x_2, \ldots, x_n , each with absolute value $\leq k-1$ and not all 0, such that

$$\left|\sum_{i=1}^{n} a_i x_i\right| \le \frac{(k-1)\sqrt{n}}{k^n - 1}.$$

- 2. If $a_1, a_2, \ldots a_n$ are distinct integers, prove that $(x a_1)(x a_2) \ldots (x a_n) 1$ cannot be expressed as a product of two polynomials, each with integer coefficients and of degree at least 1.
- 3. Let A_1, B_1 be two points on the base AB of an isosceles triangle ABC, with $\angle C > 60^{\circ}$, such that $\angle A_1CB_1 = \angle ABC$. A circle externally tangent to the circumcircle of $\triangle A_1B_1C$ is tangent to the rays CA and CB at points A_2 and B_2 , respectively. Prove that $A_2B_2 = 2AB$.
- 4. Let $\mathbb N$ be the set of positive integers, i.e., $\mathbb N=\{1,2,\ldots\}$. Find all functions $f:\mathbb N\to\mathbb N$ such that

$$f(f(m) + f(n)) = m + n$$
 for all $m, n \in \mathbb{N}$.

5. Find the largest positive integer x such that x is divisible by all the positive integers $\leq \sqrt[3]{x}$.

48