Singapore Mathematical Society

Singapore Mathematical Olympiad (SMO) 2007

(Senior Section Solution)

- 1. (A) $\left(1 + \frac{1}{2}\right)\left(1 + \frac{1}{3}\right)\left(1 + \frac{1}{4}\right)...\left(1 + \frac{1}{2006}\right)\left(1 + \frac{1}{2007}\right) = \frac{3}{2} \times \frac{4}{3} \times \frac{5}{4}...\frac{2008}{2007} = \frac{2008}{2} = 1004$, so the sum of the digits is 5.
- 2. (C) Probability = $\left(\frac{x}{x+y} \times \frac{y}{x+y+10}\right) + \left(\frac{y}{x+y} \times \frac{y+10}{x+y+10}\right)$, which upon simplification yields (C) as the answer.
- 3. (A)
 Observe that each of the two numbers is divisible by 11, hence the difference is also divisible by 11. Hence the remainder is zero.
- 4. (D)
 Parallelogram WXYZ is half of ABCD. Triangle PXW is half of WXYZ. Thus,
 PXW is a quarter of ABCD. Hence (D)
- 5. (E)

We extend the given figure to the above, into an equilateral triangle. It is not possible to show that $\angle PQR = 90^{\circ}$. Hence, $\angle QRS = 30^{\circ} + 120^{\circ}$.

6. (A) 2007 - 5 = 2002. N is a factor of 2002 and $2002 = 2 \times 7 \times 11 \times 13$.

There are altogether 2x2x2x2 = 16 factors of N. However, N must exceed 5. So, N cannot be 1 or 2. Hence there are 14 possible choices of N.

7. **(B)**

Observe that a_n repeats itself as shown in the following table.

n	1	2	3	4	5_	6	7	
a_n	07	49	43	01	0.7	49	43	

Further, $a_1 + a_2 + a_3 + a_4 = 100$.

Notice that $2007 = 4 \times 501 + 3$.

Hence the sum equals $501 \times 100 + 7 + 49 + 43 = 50199$.

Area of quadrilateral = $\frac{1}{2}(xu + yu + yv + xv)\sin 45^{\circ}$.

Using Cosine Rule, we have

$$x^2 + u^2 + 2xu\cos 45^0 = 10^2$$
 (1)

$$u^2 + y^2 - 2uy\cos 45^0 = 6^2 (2)$$

$$y^2 + v^2 + 2yv\cos 45^0 = 8^2 (3)$$

$$x^2 + v^2 - 2xv\cos 45^0 = 2^2 \tag{4}$$

$$(1) - (2) + (3) - (4)$$
:

$$2(xu + yu + yv + vx)\cos 45^{0} = 10^{2} - 6^{2} + 8^{2} - 2^{2}$$

Hence area of quadrilateral = $\frac{100 - 36 + 64 - 4}{4} = 31$.

9. (C

Let AB = x and $\angle PAB = \alpha$. By using Cosine Rule and Pythagoras' Theorem we have

$$x^2 + a^2 - 2ax\cos\alpha = (2a)^2$$

$$(x - a\cos\alpha)^2 + (x - a\sin\alpha)^2 = (3a)^2.$$

We obtain from the above two equations that

$$\cos \alpha = \frac{x^2 - 3a^2}{2ax}$$
 and $\sin \alpha = \frac{x^2 - 5a^2}{2ax}$.

Using $\sin^2 \alpha + \cos^2 \alpha = 1$, we have

$$(x^2 - 3a^2)^2 + (x^2 - 5a^2)^2 = 4a^2x^2$$

Therefore $x^4 - 10a^2x^2 + 17a^4 = 0$.

Solving, we have $x^2 = (5 \pm 2\sqrt{2})a^2$, but since x > a, we have $x^2 = (5 + 2\sqrt{2})a^2$.

Hence $\cos \angle APB = -\frac{\sqrt{2}}{2}$, so the required angle is 135°.

(E) 10.

Note that $n^2 - 12n + 27 = (n-9)(n-3)$. For this number to be a prime, either n = 10, in which case $n^2 - 12n + 27 = 7$; or n = 2, in which case $n^2 - 12n + 27 = 7$. Since a prime number cannot be factorized in other ways, we know that 7 is the only answer.

11. Answer: 89

> $\log_2 [\log_3 (\log_4 a)] = 0$ implies $\log_3 (\log_4 a) = 1$. Hence $\log_4 a = 3$, hence a = 64. Similarly, b = 16 and c = 9. Therefore a + b + c = 89.

Answer: 1 12.

$$17^{17} \equiv 7^{17} \equiv 7 \pmod{10}$$

 $19^{19} \equiv 9^{19} \equiv 9 \pmod{10}$

$$19^{19} \equiv 9^{19} \equiv 9 \pmod{10}$$

$$23^{23} \equiv 3^{23} \equiv 7 \pmod{10}$$

Since $7 \times 9 \times 7 = 441 \equiv 1 \pmod{10}$, the unit digit is 1.

13. Answer: 44

Use the identity $x^2 + y^2 = (x + y)^2 - 2xy = 144 - 100 = 44$.

(Note: In this case, one may not be able to obtain the answer by guess-and-check; the values of *x* and *y* are not even real numbers)

14. Answer: 2

We have $a = \frac{2}{\log_{10} 21.4}$ and $b = \frac{2}{(\log_{10} 21.4) - 4}$. Hence direct computation

yields
$$\frac{1}{a} - \frac{1}{b} = 2$$
.

15. Answer: 50

 $100(\sin 253^{\circ} \sin 313^{\circ} + \sin 163^{\circ} \sin 223^{\circ})$

$$= 100(\sin 73^{\circ} \sin 47^{\circ} - \sin 17^{\circ} \sin 43^{\circ})$$

$$= 100 (\sin 47^{\circ} \cos 17^{\circ} - \cos 47^{\circ} \sin 17^{\circ})$$

$$= 100 \sin (47^{\circ} - 17^{\circ}) = 100 \sin 30^{\circ}$$

- = 50
- 16. Answer: 15 120

Total number of rearrangements = $\frac{4!}{2!} \times \frac{7!}{2!2!} = 12 \times 1260 = 15120$.

17. Answer: 9900

Since a + c is even, a and c have the same parity (either both odd or both even). There are 100 odd and 100 even numbers in S. Once a and c are chosen, b is determined. The number of "nice" subsets is $2\binom{100}{2} = 100(99) = 9900$

18: Answer: 0

Note that $x^{11} + 1$ is divisible by x + 1 by Factor Theorem. Hence $2^{55} + 1 = 32^{11} + 1$ is divisible by 32 + 1 = 33, i.e. $2^{55} + 1$ is divisible by 33.

19. Answer: 21

Let the numbers be n and m where n > m.

$$n - m = 58$$

 $n^2 - m^2 = (n - m)(n + m) = 58(n + m)$ is a multiple of 100, that is,

58(n+m) = 100k for some integer k. This simplifies to

$$29(n+m) = 50k$$

Since gcd(29, 50) = 1, we must have n + m = 50p for some positive integer p. Solving the above simultaneously with n - m = 58 and bearing in mind that both m and n are two digit numbers, only n = 79 and m = 21 satisfy the question. Thus the smaller number is 21.

20. Answer: 16

 $256 \sin 10^{\circ} \sin 30^{\circ} \sin 50^{\circ} \sin 70^{\circ}$

$$= \frac{2 \times 256 \sin 10^{0} \cos 10^{0} \sin 30^{0} \cos 40^{0} \cos 20^{0}}{2 \cos 40^{0} \cos 20^{0}}$$

$$2\cos 10^{0}$$

$$= \frac{128\sin 20^{0}\cos 20^{0}\cos 40^{0}}{\cos 40^{0}}$$

$$2\cos 10^0$$

$$= \frac{64\sin 40^{\circ}\cos 40^{\circ}}{2\cos 10^{\circ}}$$

$$32\sin 80^{0}$$

$$\frac{2\cos 10^0}{2\cos 10^0}$$

- = 16.
- 21. Answer: 51

Using binomial theorem it is easy to see that

$$(2+\sqrt{3})^3+(2-\sqrt{3})^3=52,$$

and that $0 < 2 - \sqrt{3} < 1$, or $0 < \left(2 - \sqrt{3}\right)^3 < 1$ so that we have

$$51 < \left(2 + \sqrt{3}\right)^3 < 52.$$

22. Answer: 36

Let
$$a = 11 - x$$
 and $b = 13 - x$. Hence the equation becomes

$$a^3 + b^3 = (a+b)^3 (1)$$

Using the binomial expansion
$$(a+b)^3 = a^3 + b^3 + 3ab (a+b),$$

Equation (1) becomes

$$ab\left(a+b\right)=0\tag{2}$$

Thus the solution of (1) becomes

$$a = 0$$
, $b = 0$ or $a + b = 0$

or equivalently, the solution of the original equation becomes x = 11, 12 or 13.

Hence $x_1 + x_2 + x_3 = 11 + 12 + 13 = 36$.

Answer: 110° . 23.

Construct a circumcircle of the triangle ABC, with O as the centre as shown.

Note that $\angle ACB = 70^{\circ}$

Since OC = OB and
$$\angle$$
COB = $60^{\circ} \Rightarrow \angle$ OCB = 60°

 \triangle COB is an equilateral triangle.

Thus
$$\angle OCA = 70^{\circ} - 60^{\circ} = 10^{\circ} = \angle OAC$$

But \angle MAC = 10° (given). So AOM lies on a straight line.

$$\angle AOC = 160^{\circ} \Rightarrow \angle COM = 20^{\circ}$$
.

Since \angle MCA = 30° (given) and \angle OCA = 10°, thus \angle MCO = 20°. That means

 \triangle MCO is an isosceles triangle and \angle MCB = $70 - 30 = 40^{\circ}$

So BM is the perpendicular bisector of the equilateral triangle OBC. Thus

$$\angle OBM = 60^{\circ} \div 2 = 30^{\circ}$$

$$\angle BMC = 180^{\circ} - 40^{\circ} - 30^{\circ} = 110^{\circ}$$

Answer: 334 24.

$$\left[\frac{n}{2}\right] \le \frac{n}{2}, \left[\frac{n}{3}\right] \le \frac{n}{3}, \left[\frac{n}{6}\right] \le \frac{n}{6}$$

Given
$$\left[\frac{n}{2}\right] + \left[\frac{n}{3}\right] + \left[\frac{n}{6}\right] = n$$
 but we have $\frac{n}{2} + \frac{n}{3} + \frac{n}{6} = n$

So
$$\left[\frac{n}{2}\right] = \frac{n}{2}$$
, $\left[\frac{n}{3}\right] = \frac{n}{3}$, $\left[\frac{n}{6}\right] = \frac{n}{6}$

Thus *n* must be a multiple of 6

There are
$$\left\lceil \frac{2007}{6} \right\rceil = 334$$
 of them.

25. Answer: 120⁰.

It is given that $\frac{b}{c-a} - \frac{a}{b+c} = 1$. This can be rearranged into $b^2 + a^2 - c^2 = -ab$.

By using cosine rule for triangle, $\cos C = \frac{b^2 + a^2 - c^2}{2ab} = -\frac{1}{2}$. Hence $C = 120^0$ and must be the greatest angle.

26. Answer: 334

Number of integers divisible by $10 = \left[\frac{2007}{10}\right] = 200$.

Number of integers divisible by $12 = \left\lceil \frac{2007}{12} \right\rceil = 167$

Number of integers divisible by both 12 and $10 = \left[\frac{2007}{60}\right] = 33$.

By the principle of inclusion and exclusion, the number of integers divisible by either 10 or 12 (or both) = 200 + 167 - 33 = 334.

27. Answer: 1

We have ab = 1. Hence $a^2 = \frac{1}{b^2}$ and $b^2 = \frac{1}{a^2}$.

Also, cd = -1. Hence $d^2 = \frac{1}{c^2}$ and $c^2 = \frac{1}{d^2}$.

Hence
$$\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} + \frac{1}{d^2} = a^2 + b^2 + c^2 + d^2$$

$$= (a+b)^2 - 2ab + (c+d)^2 - 2cd$$

$$= \sin^2 \alpha - 2 + \cos^2 \alpha + 2$$

$$= 1$$

28. Answer: 1004

Since $a_1 = 2$, $a_2 = -3$, $a_3 = -\frac{1}{2}$, $a_4 = \frac{1}{3}$, $a_5 = 2$, thus we consider

$$a_{n+4} = \frac{1+a_{n+3}}{1-a_{n+3}} = \frac{1+\frac{1+a_{n+2}}{1-a_{n+2}}}{1-\frac{1+a_{n+2}}{1-a_{n+2}}} = -\frac{1}{a_{n+2}} = -\left(\frac{1-a_{n+1}}{1+a_{n+1}}\right)$$

$$= -\frac{1-\frac{1+a_{n}}{1-a_{n}}}{1+\frac{1+a_{n}}{1-a_{n}}} = a_{n}$$

$$a_{2007} = a_{4x501+3} = a_3 = -\frac{1}{2}$$

$$-2008 \ a_{2007} = 1004$$

29. Answer: 4

Use the identity

$$x^{2} + y^{2} + z^{2} - (xy + yz + xz) = \frac{1}{2} ((x - y)^{2} + (y - z)^{2} + (x - z)^{2}) \ge 0$$
, the answer

follows immediately.

30. Answer: 165

Supposing there are x_1 numbers smaller than a_1 , x_2 numbers between a_1 and a_2 , x_3 numbers between a_2 and a_3 and a_4 numbers greater than a_3 .

Finding the number of possible subsets of A is equivalent to finding the number of integer solutions of the equation $x_1 + x_2 + x_3 + x_4 = 12$ with the conditions that $x_1 \ge 0$, $x_2 \ge 2$, $x_3 \ge 2$ and $x_4 \ge 0$.

The number of solution of this latter equation is equivalent to the number of solutions of the equation $y_1 + y_2 + y_3 + y_4 = 8$, where y_1, y_2, y_3 and y_4 are nonnegative integers.

Hence the answer is $\binom{11}{3} = 165$.

31. Answer: 34

By binomial theorem, one sees that

$$(x+y)^4 + (x-y)^4 = 2(x^4 + 6x^2y^2 + y^4)$$

Thus the first equation becomes

$$2(x^{4} + 6x^{2}y^{2} + y^{4}) = 4112$$

$$x^{4} + 6x^{2}y^{2} + y^{4} = 2056$$

$$(x^{2} - y^{2})^{2} + 8x^{2}y^{2} = 2056$$

$$(16)^{2} + 8x^{2}y^{2} = 2056$$

$$x^2y^2 = 2256$$

Therefore,

$$(x^2 + y^2)^2 = (x^2 - y^2)^2 + 4x^2y^2 = 1156$$

Hence $x^2 + y^2 = \sqrt{1156} = 34$.

32. Answer: 5

Since
$$\frac{\sin 8A}{\cos 8A} = \tan 8A = \frac{\cos A - \sin A}{\cos A + \sin A}$$
, by rearranging we obtain

$$\sin 8A (\cos A + \sin A) = \cos 8A (\cos A - \sin A)$$

 $\sin 8A \cos A + \cos 8A \sin A = \cos 8A \cos A - \sin 8A \sin A$

$$\sin(8A + A) = \cos(8A + A)$$

$$\sin 9A = \cos 9A$$

which reduces to

$$\tan 9A = 1$$

The smallest possible of $9A = 45^{\circ}$, which gives x = 5.

33. Answer: 2500

It is given that n is a positive integer.

For $n \ge 100$, $\sum_{k=1}^{100} |n-k| = 100 \, n - 5050$, so that its minimum value is 4950 which

occurs at n = 100.

For n < 100, $\sum_{k=1}^{100} |n-k| = n^2 - 101n + 5050$. If *n* is a positive integer, its minimum

value can occur at either n = 50 or n = 51 only. By direct checking, its minimum value is 2500.

34. Answer: 334

$$2x + 3y = 2007 \Rightarrow 2x = 2007 - 3y = 3(669 - y).$$

Since 2 and 3 are relatively prime, it follows that x is divisible by 3. Write x = 3t, where t is a positive integer.

The equation reduces to y = 669 - 2t.

Since 669 - 2t > 0, we have t < 334.5, and since t is a positive integer, we have $1 \le t \le 334$.

Conversely, for any positive integer t satisfying $1 \le t \le 334$, it is easily seen that (3t, 669 - 2t) is a pair of positive integers which satisfy the given equation.

Therefore there are 334 pairs of positive integers satisfying the given equations.

35. Answer: 40 200

Note that
$$\frac{k}{1+k^2+k^4} = \frac{1}{2} \left[\frac{1}{k(k-1)+1} - \frac{1}{k(k+1)+1} \right]$$
 for all integers k .

Hence the required sum can be found by the method of difference

$$=\frac{1}{2}\left(\frac{\frac{1}{1\times0+1}-\frac{1}{1\times2+1}+\frac{1}{2\times1+1}-\frac{1}{2\times3+1}+\frac{1}{3\times2+1}-\frac{1}{3\times4+1}+\dots+\frac{1}{200\times199+1}-\frac{1}{200\times201+1}\right)$$

$$= \frac{1}{2} \left(1 - \frac{1}{40201} \right)$$
20100

Hence $80402 \times S = 40200$.