Singapore Mathematical Society

Singapore Mathematical Olympiad (SMO) 2007

(Junior Section Solutions)

1. Ans: (B)

Only the last statement is correct: $ac^2 < bc^2$ implies $c^2 > 0$, hence a < c. For other statements, counterexamples can be take as a = -2, b = -1; a = 0 and a = 0 respectively.

2. Ans: (C)

Because $2k^2$ is always even, thus $2007 + 2k^2$ is always odd. For other statements, either k = 1 or k = 0 gives a counterexample.

3. Ans: (D)

Use Inclusion and Exclusion Principle.

4. Ans: (A)

The number of occurrences for each event is: 15, 9, 7, 6 and 12 respectively.

5. Ans: (D)

Just imagine.

6. Ans: (D)

Just count: Label the "center" O. There are 6 triangles like $\triangle AFO$; 3 like $\triangle AOB$; 6 like $\triangle ABD$ and 1 like $\triangle ABC$. Total: 16.

7. Ans: (B)

Let a = 11 - x and b = 13 - x. We have $a^3 + b^3 = (a+b)^3$. Simplify: 3ab(a+b) = 0. Replacing a, b back in terms of x, we found the three roots are 11, 12 and 13. Thus $x_1 + x_2 + x_3 = 36$.

8. Ans: (B)

Since the area of sector ADF and $\triangle ABC$ are equal, we have

$$\frac{1}{2}(\frac{x}{\sqrt{\pi}})^2 \frac{\pi}{4} = \frac{1}{2}.$$

The result follows.

9. Ans: (B)

$$\frac{1}{x} = \frac{2}{y+z} \text{ and } \frac{1}{x} = \frac{3}{z+x}$$

tells us

$$\frac{y}{x} + \frac{z}{x} = 2 \text{ and } \frac{z}{x} + 1 = 3.$$

Thus y = 0 and $\frac{z}{x} = 2$. Note we didn't use the last equality, but x = -1; y = 0 and z = -2 satisfy all conditions.

10. Ans: (D)

By assumption $x + \frac{1}{x} = 13$. Thus $x^2 + \frac{1}{x^2} = 13^2 - 2 = 167$. Similarly, $x^4 + \frac{1}{x^4} = 167^2 - 2$, whose last digit is 7.

11. Ans: 2007.

Use a < 2007 + 1 and 2007 < a + 1.

12. Ans: 6.

Use
$$21 \pm 12\sqrt{3} = (\sqrt{12} \pm 3)^2$$
.

13. Ans: 30000.

Using
$$a^2 - b^2 = (a + b)(a - b)$$
, $2008^2 - 1993^2 = 4001 \times 15$ and $2007^2 - 1992^2 = 3999 \times 15$. The result follows.

14. Ans: 2002.

By completion of square,
$$2007^2 - 20070 + 31 = (2007 - 5)^2 + 6$$
. The result follows.

15. Ans: 2214.

Eliminating x, we get $3y^2 = 81y$. Then y = 27 since $y \ne 0$. Thus x = 2187. The result follows.

16. Ans: 2006.

Using
$$\frac{1}{k \cdot (k+1)} = \frac{1}{k} - \frac{1}{k+1}$$
, we get
$$2007 \cdot (1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \dots + \frac{1}{2006} - \frac{1}{2007}) = 2006.$$

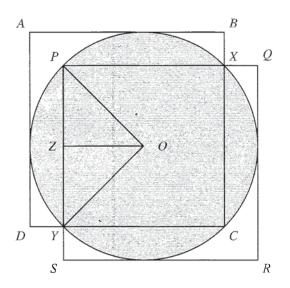
17. Ans: 18063.

Since there is no carry, this is simply 9×2007 . Or observe it is actually

18. Ans: 1.

As the diagram below shows, $PY = \sqrt{2}OP$ and $YS = OP - \frac{1}{2}PY$. Thus,

$$PS = PY + YS = \frac{2 + \sqrt{2}}{2}OP = \frac{2 + \sqrt{2}}{2}(2 - \sqrt{2}) = 1.$$



19. Ans: 286.

By assumption, $2007 - 5 = N \cdot k$ for some integer k. Factorize $2002 = 2 \cdot 7 \cdot 11 \cdot 13$. Since 200 < N < 300, the only possibility is $N = 2 \cdot 11 \cdot 13 = 286$ and k = 7.

20. Ans: 1.

Rewrite the expression as

$$\frac{a^2 + b^2 + c^2 - bc - ca - ab}{abc} = \frac{(a-b)^2 + (b-c)^2 + (c-a)^2}{2abc}.$$

Since a - b = -1, b - c = -1 and c - a = 2, the result follows.

21. Ans: 50.

$$\angle BPC = 180^{\circ} - (\angle PBC + \angle PCB) = 180^{\circ} - \frac{2}{3}(\angle ABC + \angle ACB) = 180^{\circ} - \frac{2}{3}120^{\circ} = 100^{\circ}.$$

Observe that PE bisects $\angle BPC$, the result follows.

22. Ans: 1.

We manipulate the expression and replace x - y by 1 whenever necessary:

$$x^{4} - xy^{3} - x^{3}y - 3x^{2}y + 3xy^{2} + y^{4}$$

$$= x^{3}(x - y) - y^{3}(x - y) - 3xy(x - y)$$

$$= (x - y)(x^{2} + xy + y^{2}) - 3xy$$

$$= (x - y)^{2}$$

$$= 1.$$

23. Ans: 3.

Since $2008^2 - 2007^2 = n^2 - m^2$, we have 4015 = (n+m)(n-m), i.e. $5 \cdot 11 \cdot 73 = (n+m)(n-m)$. There're four possibilities: n + m = 4015, n - m = 1; n + m = 803, n - m = 5; n + m = 365, n - m = 11 and n + m = 73, n - m = 55. But the first one n = 2008, m = 2007 is ruled out by assumption, the remaining pairs are n = 404, m = 399; n = 188, m = 177 and n = 64, m = 9.

24. Ans: 3.

Since $(x + \sqrt{xy} + y)(x - \sqrt{xy} + y) = (x+y)^2 - (\sqrt{xy})^2 = x^2 + xy + y^2$, we have $9 \cdot (x - \sqrt{xy} + y) = 27$. The result follows.

25. Ans: 075.

It suffices to make it divisible by 105 after appending. As $2007000 = 105 \times 19114 + 30$, the least number that we need to add is 75.

26. Ans: 12.

We need the maximal n such that $(n^3)^{2007} < 2007^{2007}$. We need $n^3 < 2007$. By calculation $12^3 = 1728 < 2007 < 2197 = 13^3$. The result follows.

11

27. Ans: 5.

Observe $x = \sqrt{(4 - \sqrt{3})^2} = 4 - \sqrt{3}$ and $x^2 - 8x + 13 = 19 - 8\sqrt{3} - 32 + 8\sqrt{3} + 13 = 0$. Use long division,

$$x^4 - 6x^3 - 2x^2 + 18x + 23 = (x^2 - 8x + 13)(x^2 + 2x + 1) + 10.$$

Thus the original expression equals

$$\frac{(x^2 - 8x + 13)(x^2 + 2x + 1) + 10}{x^2 - 8x + 13 + 2} = \frac{10}{2} = 5.$$

28. Ans: 2.

Using ax + 1 = -x - a, we have x = -1 or a = -1. But when a = 1, the original equation has no real roots. Thus x = -1, we have a = 2.

29. Ans: 45.

2007 is the 1004-th odd number. If 2007 is in the group k + 1, then $1 + 2 + \cdots + k < 1004 \le 1 + 2 + \dots + (k + 1)$. Thus

$$\frac{k(k+1)}{2} < 1004 \le \frac{(k+1)(k+2)}{2}.$$

We get k = 44. So 2007 is in group 45 which has 45 odd integers.

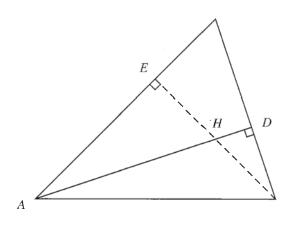
30. Ans: 15.

Construct CE which is perpendicular to AB where E is on AB. Since $\angle BAC = 45^{\circ}$ (given), AE = CE. Thus the right $\triangle AEH$ is congruent to right $\triangle CEB$ So AH = CB = 5.

Next $\triangle ADB$ is similar to $\triangle CDH$, thus

$$\frac{BD}{AD} = \frac{HD}{CD} = \frac{AD - AH}{CD}$$
 which implies $\frac{3}{AD} = \frac{AD - 5}{2}$.

we get $AD^2 - 5AD - 6 = 0$ Solving AD = 6 only as AD > 0. The result follows.



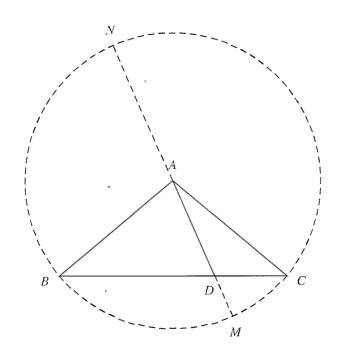
Note, if one is familiar with trigonometry, one may have an alternative solution as follows: Let α and β denote $\angle BAD$ and $\angle DAC$ respectively. Using $\tan(\alpha + \beta) = \tan 45^\circ = 1$, one get

$$\frac{\frac{3}{AD} + 2AD}{1 - \frac{3}{AD}\frac{2}{AD}} = 1,$$

consequently AD = 6.

31. Ans: 2.

Construct a circle with A as the center and $AB = AC = \sqrt{3}$ as the radius. Extend AD to meet the circumference at M and N as shown.



Using the Intersecting Chord Theorem

$$BD \cdot DC = MD \cdot ND = (\sqrt{3} - 1)(\sqrt{3} + 1) = 2.$$

32. Ans: 7.

Observe that for $n \ge 2$, 2^{2^n} always ends with a 6. The result follows.

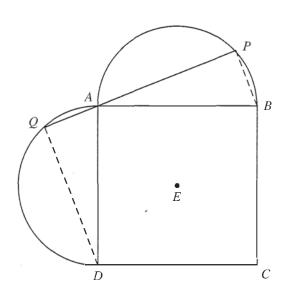
33. Ans: 34.

Join QD and PB, it is easy to show that right $\triangle DQA$ is congruent to right $\triangle APB$. Thus PB = QA = 14.

Apply Pythagoras' Theorem to $\triangle APB$,

$$(\sqrt{2}x)^2 = 46^2 + 14^2.$$

Solve, x = 34.



34. Ans: 37.

Since $247 = 13 \cdot 19$, one of n, n + 1, n + 2 is divisible by 13, call it a and one by 19 call it b. Clearly $|b - a| \le 2$.

Let b = 19c. When c = 1, since $|b - a| \le 2$, a is among 17, 18, 19, 20, 21. But none is divisible by 13, hence we try c = 2. Now b = 38 and a is among 36, 37, 38, 39, 40, hence a = 39. Thus the least n = 37.

35. Ans: 4265.

Let $N + 496 = a^2$ and $N + 224 = b^2$ for some positive integers a and b. Then $a^2 - b^2 = 496 = 224 = 272 = 2^4 \cdot 17$. Thus 17|(a+b)(a-b). If 17|a-b then $a-b \ge 17$ and $a+b \le 16$, impossible. Thus 17|a+b.

We have five possibilities for (a + b, a - b): (17, 16), (34, 8), (68, 4), (136, 2), (272, 1). Solve and discard non-integer solutions, we have (a, b) = (21, 13), (36, 32) and (69, 67). Thus the largest N is $69^2 - 496 = 4265$.