Singapore Mathematical Society Singapore Mathematical Olympiad (SMO) 2011 (Open Section, Round 1)

Wednesday, 1 June 2011

0930-1200 hrs

Instructions to contestants

- 1. Answer ALL 25 questions.
- 2. Write your answers in the answer sheet provided and shade the appropriate bubbles below your answers.
- 3. No steps are needed to justify your answers.
- 4. Each question carries 1 mark.
- 5. No calculators are allowed.

PLEASE DO NOT TURN OVER UNTIL YOU ARE TOLD TO DO SO

Throughout this paper, let $|x|$ denote the greatest integer less than or equal to x. For example, $|2.1| = 2, |3.9| = 3$ (This notation is used in Questions 7, 9, 19 and 20).

- 1. A circular coin A is rolled, without sliding, along the circumference of another stationary circular coin B with radius twice the radius of coin A . Let x be the number of degrees that the coin A makes around its centre until it first returns to its initial position. Find the value of x.
- 2. Three towns X, Y and Z lie on a plane with coordinates $(0, 0)$, $(200, 0)$ and $(0, 300)$ respectively. There are 100, 200 and 300 students in towns X, Y and Z respectively. A school is to be built on a grid point (x, y) , where x and y are both integers, such that the overall distance travelled by all the students is minimized. Find the value of $x + y$.
- 3. Find the last non-zero digit in 30!.

(For example, $5! = 120$; the last non-zero digit is 2.)

4. The diagram below shows $\triangle ABC$, which is isoceles with $AB = AC$ and $\angle A = 20^{\circ}$. The point D lies on AC such that $AD = BC$. The segment BD is constructed as shown. Determine $\angle ABD$ in degrees.

5. Given that
$$
\frac{\cos^4 \alpha}{\cos^2 \beta} + \frac{\sin^4 \alpha}{\sin^2 \beta} = 1
$$
, evaluate $\frac{\cos^4 \beta}{\cos^2 \alpha} + \frac{\sin^4 \beta}{\sin^2 \alpha}$.

6. The number 25 is expressed as the sum of positive integers x_1, x_2, \dots, x_k , where $k \leq 25$. What is the maximum value of the product of x_1, x_2, x_3, \dots , and x_k ?

- 7. Let x_0 be the largest (real) root of the equation $x^4 16x 12 = 0$. Evaluate $|10x_0|$.
- 8. Let $x_i \in \{\sqrt{2}-1, \sqrt{2}+1\}$, where $i = 1, 2, 3, \dots, 2012$. Define

$$
S = x_1x_2 + x_3x_4 + x_5x_6 + \cdots + x_{2009}x_{2010} + x_{2011}x_{2012}.
$$

How many different positive integer values can S attain?

- 9. Let A be the set of real numbers x satisfying the inequality $x^2 + x 110 < 0$ and B be the set of real numbers x satisfying the inequality $x^2 + 10x - 96 < 0$. Suppose that the set of integer solutions of the inequality $x^2 + ax + b < 0$ is exactly the set of integers contained in $A \cap B$. Find the maximum value of $||a-b||$.
- 10. Given that

 $\alpha + \beta + \gamma = 14$ $\alpha^2 + \beta^2 + \gamma^2 = 84$
 $\alpha^3 + \beta^3 + \gamma^3 = 584$

find max $\{\alpha, \beta, \gamma\}.$

- 11. Determine the largest even positive integer which cannot be expressed as the sum of two composite odd positive integers.
- 12. Let a, b, c be positive integers such that $\frac{1}{a} + \frac{1}{b} = \frac{1}{c}$ and $gcd(a, b, c) = 1$. Suppose $a+b \le 2011$.
Determine the largest possible value of $a + b$.
- 13. Let $x[n]$ denote $x^{x^{\cdot^x}}$, where there are *n* terms of *x*. What is the minimum value of *n* such that $9[9] < 3[n]$?

(For example, $3[2] = 3^3 = 27$; $2[3] = 2^{2^2} = 16$.)

- 14. In the triangle ABC, $\angle B = 90^{\circ}$, $\angle C = 20^{\circ}$, D and E are points on BC such that $\angle ADC =$ 140° and $\angle AEC = 150$ °. Suppose $AD = 10$. Find $BD \cdot CE$.
- 15. Let $S = \{1, 2, 3, \dots, 65\}$. Find the number of 3-element subsets $\{a_1, a_2, a_3\}$ of S such that $a_i \le a_{i+1} - (i+2)$ for $i = 1, 2$.
- 16. Determine the value of

$$
\frac{3}{\sin^2 20^\circ} - \frac{1}{\cos^2 20^\circ} + 64 \sin^2 20^\circ.
$$

17. A real-valued function f satisfies the relation

 $f(x^{2}+x) + 2f(x^{2}-3x+2) = 9x^{2} - 15x$

for all real values of x . Find $f(2011)$.

- 18. A collection of 2011 circles divide the plane into N regions in such a way that any pair of circles intersects at two points and no point lies on three circles. Find the last four digits of N.
- 19. If a positive integer N can be expressed as $|x| + |2x| + |3x|$ for some real numbers x, then we say that N is "visible"; otherwise, we say that N is "invisible". For example, 8 is visible since $8 = |1.5| + |2(1.5)| + |3(1.5)|$, whereas 10 is invisible. If we arrange all the "invisible" positive integers in increasing order, find the $2011th$ "invisible" integer.
- 20. Let A be the sum of all non-negative integers n satisfying

$$
\lfloor \frac{n}{27} \rfloor = \lfloor \frac{n}{28} \rfloor.
$$

Determine A.

21. A triangle whose angles are A, B, C satisfies the following conditions

$$
\frac{\sin A + \sin B + \sin C}{\cos A + \cos B + \cos C} = \frac{12}{7},
$$

and

$$
\sin A \sin B \sin C = \frac{12}{25}.
$$

Given that $\sin C$ takes on three possible values s_1 , s_2 and s_3 , find the value of $100s_1s_2s_3$.

22. Let $x > 1$, $y > 1$ and $z > 1$ be positive integers for which the following equation

$$
1! + 2! + 3! + \ldots + x! = y^z
$$

is satisfied. Find the largest possible value of $x + y + z$.

- 23. Let ABC be a non-isosceles acute-angled triangle with circumcentre O, orthocentre H and $\angle C = 41^{\circ}$. Suppose the bisector of $\angle A$ passes through the midpoint M of OH. Find $\angle HAO$ in degrees.
- 24. The circle γ_1 centred at O_1 intersects the circle γ_2 centred at O_2 at two points P and Q. The tangent to γ_2 at P intersects γ_1 at the point A and the tangent to γ_1 at P intersects γ_2 at the point B where A and B are distinct from P. Suppose $PQ \cdot O_1O_2 = PO_1 \cdot PO_2$ and $\angle APB$ is acute. Determine the size of $\angle APB$ in degrees.
- 25. Determine

$$
\lim_{n\to\infty}\sum_{i=0}^n\frac{1}{\binom{n}{i}}.
$$

(Note: Here
$$
\binom{n}{i}
$$
 denotes $\frac{n!}{i!(n-i)!}$ for $i = 0, 1, 2, 3, \dots, n$.)