Singapore Mathematical Society Singapore Mathematical Olympiad (SMO) 2011 (Open Section, Round 1 Solution)

1. Answer. 1080

Solution. The number of complete revolutions the first coin A has turned through is the sum of two components: the number of revolutions round the stationary coin B if A were sliding on B and the number of revolutions round A 's own axis (perpendicular to its plane and through its centre) determined by the distance travelled on the circumference of B . Thus, the total number of revolutions is

$$
1 + \frac{2\pi(2r)}{2\pi r} = 3.
$$

Hence the number of degrees $= 3 \times 360 = 1080$.

2. Answer. 300

Solution. We claim that the school must be built in Z . Suppose the school is to be built at another point A . The change in distance travelled

$$
= 300ZA + 200YA + 100XA - 200YZ - 100XZ
$$

= 100(ZA + AX - ZX) + 200(ZA + AY - ZY)
> 0

by triangle inequality. Thus, $min(x + y) = 0 + 300 = 300$.

3. Answer. 8

Solution. We first obtain the prime factorization of 30!. Observe that 29 is the largest prime number less than 30. We have

$$
\left[\frac{30}{2}\right] + \left[\frac{30}{2^2}\right] + \left[\frac{20}{2^3}\right] + \left[\frac{30}{2^4}\right] = 26
$$

$$
\left[\frac{30}{3}\right] + \left[\frac{30}{3^2}\right] + \left[\frac{30}{3^3}\right] = 14
$$

$$
\left[\frac{30}{5}\right] + \left[\frac{30}{5^2}\right] = 7
$$

$$
\left[\frac{30}{7}\right] = 4
$$

$$
\left[\frac{30}{11}\right] = 2
$$

$$
\left[\frac{30}{13}\right] = 2
$$

$$
\left[\frac{30}{13}\right] = \left[\frac{30}{19}\right] = \left[\frac{30}{23}\right] = \left[\frac{30}{29}\right] = 1.
$$

 \Box

 \Box

Thus,

30! =
$$
2^{26} \cdot 3^{14} \cdot 5^7 \cdot 7^4 \cdot 11^2 \cdot 13^2 \cdot 17 \cdot 19 \cdot 23 \cdot 29
$$

\n30! = $2^{19} \cdot 3^{14} \cdot 7^4 \cdot 11^2 \cdot 13^2 \cdot 17 \cdot 19 \cdot 23 \cdot 29$
\n= $6^{14} \cdot 2^5 \cdot 7^4 \cdot 11^2 \cdot 13^2 \cdot 17 \cdot 19 \cdot 23 \cdot 29$
\n= $6(2)(1)(1)(9)(7)(9)(3)(9) \text{(mod 10)}$
\n= $2(-1)(-3)(-1)(3)(-1) \text{(mod 10)}$
\n= 8(mod 10) ,

showing that the last non-zero digit is 8.

 \Box

4. Answer. 10

5. Answer. 1

Solution. Let E be the point inside $\triangle ABC$ such that $\triangle EBC$ is equilateral. Connect A and D to E respectively.

It is clear that $\triangle AEB$ and $\triangle AEC$ are congruent, since $AE = AE$, $AB = AC$ and $BE = CE$. It implies that $\angle BAE = \angle CAE = 10^{\circ}$.

Since $AD = BC = BE$, $\angle EBA = \angle DAB = 20^{\circ}$ and $AB = BA$, we have $\triangle ABE$ and $\triangle BAD$ are congruent, implying that $\angle ABD_A = \angle BAE = 10^\circ$.

 \Box

Solution. Since
$$
\frac{\cos^4 \alpha}{\cos^2 \beta} + \frac{\sin^4 \alpha}{\sin^2 \beta} = 1
$$
, set $\cos \theta = \frac{\cos^2 \alpha}{\cos \beta}$ and $\sin \theta = \frac{\sin^2 \alpha}{\sin \beta}$. Then
 $\cos(\theta - \alpha) = \cos \theta \cos \alpha + \sin \theta \sin \alpha = \cos^2 \alpha + \sin^2 \alpha = 1$.

and so

$$
\theta - \alpha = 2k\pi
$$
 for some $k \in \mathbb{Z}$.

Thus $\sin \theta = \sin \alpha$ and $\cos \theta = \cos \alpha$. Consequently,

$$
\frac{\cos^4 \beta}{\cos^2 \alpha} + \frac{\sin^4 \beta}{\sin^2 \alpha} = \cos^2 \beta + \sin^2 \beta = 1.
$$

 \Box

6. Answer. 8748

Solution. Clearly, no x_i should be 1. If $x_i \geq 4$, then splitting it into two factors 2 and x_i-2 will give a product of $2x_i-4$ which is at least as large as x_i . Further, $3\times3 > 2\times2\times2$, so any three factors of 2 should be replaced by two factors of 3. Thus, split 25 into factors of 3, retaining two 2's, which means $25 = 7 \times 3 + 2 \times 2$. The maximum product is thus $3^72^2 = 8748.$ \Box

7. Answer. 27

Solution. Since $x^4 - 16x - 12 \equiv x^4 + 4x^2 + 4 - 4(x^2 + 4x + 4) \equiv (x^2 - 2x - 2)(x^2 + 2x + 6)$, we conclude that $x_0 = 1 + \sqrt{3}$ and so $1 + \sqrt{2.89} < x_0 < 1 + \sqrt{3.24}$. Consequently, $|10x_0| = 27$. \Box

8. Answer. 504

Solution. Note that $(\sqrt{2}-1)^2 = 3-2\sqrt{2}$, $(\sqrt{2}+1)^2 = 3+2\sqrt{2}$ and $(\sqrt{2}-1)(\sqrt{2}+1) = 1$. There are 1006 pairs of products in S; each pair of the product can be either $3-2\sqrt{2}$, $3+2\sqrt{2}$ or 1. Let a be the number of these products with value $3-2\sqrt{2}$, b be the number of these products with value $3+2\sqrt{2}$ and c be the number of them with value 1. The $a+b+c=1006$. Hence

$$
S = a(3 - 2\sqrt{2}) + b(3 + 2\sqrt{2}) + c = 3a + 3b + c + 2\sqrt{2}(b - a).
$$

For S to be a positive integer, $b = a$ and thus $2a + c = 1006$. Further,

$$
S = 6a + c = 6a + 1006 - 2a = 4a + 1006.
$$

From $2a + c = 1006$ and that $0 \le a \le 503$, it is clear that S can have 504 different positive \Box integer values.

9. Answer. 71

Note that $x^2 + x - 110 = (x - 10)(x + 11)$. Thus the set of real numbers x satisfying the inequality $x^2 + x - 110 < 0$ is $-11 < x < 10$.

Also note that $x^2 + 10x - 96 = (x - 6)(x + 16)$. Thus the set of real numbers x satisfying the inequality $x^2 + 10x - 96 < 0$ is $-16 < x < 6$.

Thus $A = \{x : -11 < x < 10\}$ and $B = \{x : -16 < x < 6\}$, implying that

$$
A \cap B = \{x : -11 < x < 6\}.
$$

Now let $x^2 + ax + b = (x - x_1)(x - x_2)$, where $x_1 \le x_2$. Then the set of integer solutions of $x^2 + ax + b < 0$ is

 ${k : k \text{ is an integer}, x_1 < k < x_2}.$

By the given condition,

 ${k: k \text{ is an integer}, x_1 < k < x_2} = {k: k \text{ is an integer}, -11 < k < 6}$

 $= \{-10,-9,\cdots,5\}.$

Thus $-11 \leq x_1 < -10$ and $5 < x_2 \leq 6$. It implies that $-6 < x_1 + x_2 < -4$ and $-66 \le x_1x_2 < -50.$

From $x^2 + ax + b = (x-x_1)(x-x_2)$, we have $a = -(x_1+x_2)$ and $b = x_1x_2$. Thus $4 < a < 6$ and $-66 \le b < -50$. It follows that $54 < a - b < 72$.

Thus max $||a - b|| \leq 71$.

It remains to show that it is possible that $||a - b|| = 71$ for some a and b.

Let $a = 5$ and $b = -66$. Then $x^2 + ab + b = (x+1)(x-6)$ and the inequality $x^2 + ab + b < 0$ has solutions $\{x: -11 < x < 6\}$. So the set of integer solutions of $x^2 + ab + b < 0$ is really the set of integers in $A \cap B$.

Hence max $||a - b|| = 71$.

$$
\Box
$$

10. Answer. 8

Solution. We consider the polynomial

$$
P(t) = t^3 + bt^2 + ct + d.
$$

Suppose the root of the equation $P(t) = 0$ are x, y and z. Then

$$
-b = x + y + z = 14,
$$

$$
c = xy + xz + yz = \frac{1}{2} \left((x + y + z)^2 - x^2 - y^2 - z^2 \right) = \frac{1}{2} \left(14^2 - 84 \right) = 56
$$

and

$$
x^3 + y^3 + z^3 + 3d = (x + y + z)(x^2 + y^2 + z^2 - xy - xz - yz).
$$

Solving for b, c and d, we get $b = -14$, $c = 30$ and $d = -64$. Finally, since $t^3 - 14t^2 + 30t$ $64 = 0$ implies $t = 2$ or $t = 4$ or $t = 8$, we conclude that $\max\{\alpha, \beta, \gamma\} = 8$.

11. Answer. 38

Solution. Let n be an even positive integer. Then each of the following expresses n as the sum of two odd integers: $n = (n - 15) + 15$, $(n - 25) + 25$ or $(n - 35) + 35$. Note that at least one of $n-15$, $n-25$, $n-35$ is divisible by 3, hence n can be expressed as the sum of two composite odd numbers if $n > 38$. Indeed, it can be verified that 38 cannot be expressed as the sum of two composite odd positive integers. \Box

12. Answer. 1936

Solution. We first show that $a + b$ must be a perfect square. The equation $\frac{1}{a} + \frac{1}{b} = \frac{1}{c}$ is equivalent to $\frac{a-c}{c} = \frac{c}{b-c}$. Write $\frac{a-c}{c} = \frac{c}{b-c} = \frac{p}{q}$, where $gcd(p, q) = 1$. From $\frac{a-c}{c} = \frac{p}{q}$, we have $\frac{b}{p+q} = \frac{c}{p}$. Since $gcd(p,q) = 1$, we must have p divides c. Thus $gcd(p,q) = 1$ implies pq divides c. Therefore $\frac{a}{p(p+q)} = \frac{b}{q(p+q)} = \frac{c}{pq}$ is an integer r. Then r divides a, b and c, so that $r = 1$ since $gcd(a, b, c) = 1$. Consequently, $a + b = p(p + q) + q(p + q) = (p + q)^2$. Next the largest square less than or equal to 2011 is $44^2 = 1936$. As $1936 = 1892 + 44$. and $\frac{1}{1892} + \frac{1}{44} = \frac{1}{43}$, where $gcd(1892, 44, 43) = 1$, we have $a = 1892$, $b = 44$ and $c = 43$ give the largest value of $a + b$. These values of a, b, c can obtained from the identity

13. Answer. 10

 $\frac{1}{m^2-m}+\frac{1}{m}=\frac{1}{m-1}.$

Solution. Suppose $9[m] < 3[n]$. Note that $9[m] = 3^p$ and $3[n] = 3^q$ for some integers p and q. Thus, $q \geq p+1$. In particular,

$$
2(9[m]) < 3(9[m]) = 3^{p+1} \le 3^q = 3[n].
$$

Then we have

$$
9[m+1] = (3^2)^{9[m]} = 3^{2(9[m])} < 3^{3[n]} = 3[n+1].
$$

Thus, $9[m] < 3[n]$ implies $9[m+1] < 3[n+1]$. It is clear that $9[2] = 81 = 3^4 < 3[3]$. Continuing this way, $9[9] < 3[10]$. It is also clear that $9[9] > 3[9]$, hence the minimum value of n is 10. \Box

14. Answer. 50

Direct calculation gives $\angle DAC = 20^{\circ}$ and $\angle BAD = 50^{\circ}$. Thus $AD = CD = 10$. Also $BD = 10 \sin 50^\circ$. By sine rule applied to the triangle AEC, we have $\frac{CE}{\sin 10^\circ} = \frac{AC}{\sin 150^\circ}$ $\frac{2\times10\cos 20^{\circ}}{\sin 150} = 40\cos 20^{\circ}.$ (Note that $AD = DC$.)

Therefore, $BD \cdot CE = 400 \cos 20^{\circ} \sin 10^{\circ} \sin 50^{\circ}$.

Direct calculation shows that $\cos 20^{\circ} \sin 10^{\circ} \sin 50^{\circ} = \frac{1}{8}$ so that $BD \cdot CE = 50$.

\Box

 \Box

15. Answer. 34220

Solution. Note that the condition $a_i \leq a_{i+1} - (i+2)$ for $i = 1, 2$ is equivalent to that

$$
a_1 + 3 \le a_2, \quad a_2 + 4 \le a_3.
$$

Let A be the set of all 3-element subsets $\{a_1, a_2, a_3\}$ of S such that $a_1 + 3 \le a_2$ and $a_2 + 4 \leq a_3$.

Let B be the set of all 3-element subsets $\{b_1, b_2, b_3\}$ of the set $\{1, 2, \dots, 60\}$.

We shall show that $|A| = |B| = \binom{60}{3} = 34220$ by showing that the mapping ϕ below is a bijection from A to B :

$$
\phi: \{a_1, a_2, a_3\} \longrightarrow \{a_1, a_2 - 2, a_3 - 5\}.
$$

First, since $\{a_1, a_2, a_3\} \in A$, we have $a_1 + 3 \le a_2$ and $a_2 + 4 \le a_3$, and so $a_1 < a_2 - 2 < a_3 - 5$, implying that $\{a_1, a_2-2, a_3-5\} \in B$.

It is clear that ϕ is injective.

It is also surjective, as for any $\{b_1, b_2, b_3\} \in B$ with $b_1 < b_2 < b_3$, we have $\{b_1, b_2+2, b_3+5\} \in A$ A and

$$
\phi:\{b_1,b_2+2,b_3+5\}\longrightarrow\{b_1,b_2,b_3\}
$$

Hence ϕ is a bijection and $|A| = |B| = 34220$.

16. Answer. 32

Solution. It is clear that $8(\cos 40^\circ)^3 - 6 \cos 40^\circ + 1 = 0$, since $\cos 3A = 4 \cos^3 A - 3 \cos A$. Observe that

$$
\frac{3}{\sin^2 20^\circ} - \frac{1}{\cos^2 20^\circ} + 64 \sin^2 20^\circ
$$
\n
$$
= \frac{6}{1 - \cos 40^\circ} - \frac{2}{1 + \cos 40^\circ} + 32(1 - \cos 40^\circ)
$$
\n
$$
= \frac{8 \cos 40^\circ + 4}{1 - (\cos 40^\circ)^2} + 32 - 32 \cos 40^\circ
$$
\n
$$
= \frac{8 \cos 40^\circ + 4 - 32 \cos 40^\circ + 32(\cos 40^\circ)^3}{1 - (\cos 40^\circ)^2} + 32
$$
\n
$$
= 4 \times \frac{1 - 6 \cos 40^\circ + 8(\cos 40^\circ)^3}{1 - (\cos 40^\circ)^2} + 32
$$
\n
$$
= 32,
$$

where the last step follows from $8(\cos 40^\circ)^3 - 6\cos 40^\circ + 1 = 0$.

17. Answer. 6029

Solution. Given the original equation

$$
f(x^{2} + x) + 2f(x^{2} - 3x + 2) = 9x^{2} - 15x,
$$

we replace x by $1 - x$ and obtain

$$
f(x2 - 3x + 2) + 2f(x2 + x) = 9(1 - x)2 - 15(1 - x) = 9x2 - 3x - 6.
$$

Eliminating $f(x^2-3x+2)$ from the two equations, we obtain

$$
3f(x^2 + x) = 9x^2 + 9x - 12,
$$

thereby

$$
f(x^{2} + x) = 3x^{2} + 3x - 4 = 3(x^{2} + x) - 4,
$$

hence $f(2011) = 3(2011) - 4 = 6029$.

 \Box

 \Box

18. Answer. 2112

Solution. We denote the numbers of regions divided by *n* circles by $P(n)$. We have $P(1) = 2, P(2) = 4, P(3) = 8, P(4) = 14,...$ and from this we notice that

$$
P(1) = 2,
$$

\n
$$
P(2) = P(1) + 2,
$$

\n
$$
P(3) = P(2) + 4,
$$

\n
$$
P(4) = P(3) + 6,
$$

\n... ...
\n
$$
P(n) = P(n-1) + 2(n-1).
$$

Summing these equations, we obtain

$$
P(n) = 2 + 2 + 4 + \ldots + 2(n - 1) = 2 + n(n - 1).
$$

This formula can be shown by induction on n to hold true.

Base case: $n = 1$ is obvious.

Inductive step: Assume that the formula holds for $n = k \ge 1$, i.e., $P(k) = 2 + k(k - 1)$. Consider $k+1$ circles, the $(k+1)$ -th circle intersects k other circles at 2k points (for each one, it cuts twice), which means that this circle is divided into $2k$ arcs, each of which divides the region it passes into two sub-regions. Therefore, we have in addition $2k$ regions, and so

$$
P(k + 1) = P(k) + 2k = 2 + k(k - 1) + 2k = 2 + k(k + 1).
$$

The proof by induction is thus complete.

Using this result, put $n = 2011$, the number of regions $N = 2 + 2011 \cdot (2011 - 1) = 4042112$. So, the last 4 digits are 2112. \Box

19. Answer. 6034

Solution. Let n be a positive integer.

If
$$
n \le x < n + \frac{1}{3}
$$
, then $2n \le 2x < 2n + \frac{2}{3}$ and $3n \le 3x < 3n + 1$, giving
\n
$$
N = \lfloor x \rfloor + \lfloor 2x \rfloor + \lfloor 3x \rfloor = n + 2n + 3n = 6n.
$$

If
$$
n + \frac{1}{3} \le x < n + \frac{1}{2}
$$
, then $2n + \frac{2}{3} \le 2x < 2n + 1$ and $3n + 1 \le 3x < 3n + \frac{3}{2}$, giving
\n
$$
N = \lfloor x \rfloor + \lfloor 2x \rfloor + \lfloor 3x \rfloor = n + 2n + 3n + 1 = 6n + 1.
$$

If
$$
n + \frac{1}{2} \le x < n + \frac{2}{3}
$$
, then $2n + 1 \le 2x < 2n + \frac{4}{3}$ and $3n + \frac{3}{2} \le 3x < 3n + \frac{4}{3}$, giving
\n
$$
N = \lfloor x \rfloor + \lfloor 2x \rfloor + \lfloor 3x \rfloor = n + 2n + 1 + 3n + 1 = 6n + 2.
$$

If $n + \frac{2}{3} \le x < n + 1$, then $2n + \frac{4}{3} \le 2x < 2n + 2$ and $3n + 2 \le 3x < 3n + 3$, giving $N = |x| + |2x| + |3x| = n + 2n + 1 + 3n + 2 = 6n + 3.$

Thus, "invisible" numbers must be of the form $6n + 4$ and $6n + 5$. The 2011th "invisible" integer is $4 + 6 \times \frac{2011 - 1}{2} = 6034.$ \Box

20. Answer. 95004

Solution. We shall prove that for any positive integer a , if $f(a)$ denotes the sum of all nonnegative integer solutions to $\lfloor \frac{n}{a} \rfloor = \lfloor \frac{n}{a+1} \rfloor$, then

$$
f(a) = \frac{1}{6}a(a^2 - 1)(a + 2).
$$

Thus $f(27) = 95004$.

Let *n* be a solution to $\lfloor \frac{n}{a} \rfloor = \lfloor \frac{n}{a+1} \rfloor$. Write $n = aq + r$, where $0 \le r < a$. Thus $\lfloor \frac{n}{a} \rfloor = q$. Also $n = (a+1)q + r - q$. Since $\lfloor \frac{n}{a+1} \rfloor = q$, we have $0 \le r - q$, that is, $q \le r < a$. Therefore for each $q = 0, 1, \ldots, a-1$, r can be anyone of the values $q, q + 1, \ldots, a-1$. Thus

$$
A = \sum_{q=0}^{a-1} \sum_{r=q}^{a-1} (qa+r)
$$

= $\sum_{q=0}^{a-1} (a-q)qa + \sum_{q=0}^{a-1} \sum_{r=q}^{a-1} r$
= $a^2 \sum_{q=0}^{a-1} q - a \sum_{q=0}^{a-1} q^2 + \sum_{r=0}^{a-1} \sum_{q=0}^{r} r$
= $a^2 \sum_{q=0}^{a-1} q - a \sum_{q=0}^{a-1} q^2 + \sum_{r=0}^{a-1} r(r+1)$
= $a^2 \sum_{q=0}^{a-1} q - a \sum_{q=0}^{a-1} q^2 + \sum_{r=0}^{a-1} r^2 + \sum_{r=0}^{a-1} r$
= $(a^2 + 1) \cdot \frac{1}{2} a(a-1) + (1-a) \cdot \frac{1}{6} a(2a-1)(a-1)$
= $\frac{1}{6} a(a^2 - 1)(a+2).$

 \Box

21. Answer. 48

By using factor formulae and double angle formulae:

$$
\frac{\sin A + \sin B + \sin C}{\cos A + \cos B + \cos C} = \frac{4 \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}}{1 + 4 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}} = \frac{12}{7},
$$

and

$$
\sin A \sin B \sin C = 8 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2} = \frac{12}{25}.
$$

Solving these equations, we obtain

$$
\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2} = 0.1
$$

$$
\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2} = 0.6
$$

Furthermore,

$$
\sin\frac{C}{2} = \cos\left(\frac{A+B}{2}\right) = \cos\frac{A}{2}\cos\frac{B}{2} - \sin\frac{A}{2}\sin\frac{B}{2},
$$

multiplying both sides by $\sin \frac{C}{2} \cos \frac{C}{2}$, we get

$$
\sin^2 \frac{C}{2} \cos \frac{C}{2} = 0.6 \sin \frac{C}{2} - 0.1 \cos \frac{C}{2}.
$$

or equivalently,

$$
(1 - t2)t = 0.6\sqrt{1 - t2} - 0.1t \iff 11t - 10t3 = 6\sqrt{1 - t2},
$$

where $t = \cos \frac{C}{2}$. This equation solves for $t = \sqrt{\frac{1}{2}}$, $\sqrt{\frac{4}{5}}$, $\sqrt{\frac{3}{10}}$, and so the corresponding values of $\sin C$ are

 $1, 0.8, 0.6$

and hence $100s_1s_2s_3 = 100 \cdot 1 \cdot 0.8 \cdot 0.6 = 48$.

22. Answer. 8

Solution. We first prove that if $x \ge 8$, then $z = 2$. To this end, we observe that the left hand side of the equation $1! + 2! + 3! + \ldots + x!$ is divisible by 3, and hence $3 | y^z$. Since 3 is a prime, $3|y$. So, $3^z |y^z$ by elementary properties of divisibility.

On the other hand, when $x = 8$,

$$
1! + 2! + \ldots + 8! = 46233
$$

is divisible by 3^2 but not by 3^3 . Now, note that if $n \geq 9$, then we have $3^3 | n!$. So, when $x > 8$, the left hand side is divisible by 3^2 but not by 3^3 . This means that $z = 2$.

We now prove further that when $x \geq 8$, then the given equation has no solutions. To prove this, we observe that $x \geq 8$ implies that

$$
1! + 2! + 3! + 4! + \underbrace{5! + \dots x!}_{\text{divisible by } 5} \equiv 3 \pmod{5}.
$$

Since we have deduced that $z = 2$, we only have $y^2 \equiv 0, 1, -1 \pmod{5}$. This mismatch now completes the argument that there are no solutions to the equation when $x \geq 8$.

So the search narrows down to $x < 8$. By exhaustion, it is easy to find that there is only one solution:

$$
x=y=3, z=2.
$$

Thus, the sum of this only combination must be the largest and is equal to $3+3+2=8$. \Box

23. Answer. 38

Let P be the midpoint of the arc BC not containing A on the circumcircle of the triangle ABC. Then OP is the perpendicular bisector of BC. Since AM bisects $\angle A$, the points A, M, P are collinear. As both AH and OP are perpendicular to BC, they are parallel. Thus $\angle HAM = \angle OPM = \angle OAM$. Also $\angle HMA = \angle OMP$. Since $HM = OM$, we have the triangles AHM and POM are congruent. Therefore $AH = PO = AO$.

Let L be the midpoint of BC. It is a known fact that $AH = 2OL$. To see this, extend CO meeting the circumcircle of the triangle ABC at the point N. Then $ANBH$ is a parallelogram. Thus $AH = NB = 2OL$. Therefore in the right-angled triangle OLC, $OC = OA = AH = 2OL$. This implies $\angle OCL = 30^{\circ}$. Since the triangle ABC is acute, the circumcentre O lies inside the triangle. In fact $\angle A = 60^{\circ}$ and $\angle B = 79^{\circ}$. Then $\angle OAC =$ $\angle OCA = 41^{\circ} - 30^{\circ} = 11^{\circ}$. Consequently, $\angle HAO = 2\angle OAM = 2 \times (30^{\circ} - 11^{\circ}) = 38^{\circ}$. \Box

24. Answer. 30

Let $PO_1 = r_1$ and $PO_2 = r_2$. First note that O_1O_2 intersects PQ at the midpoint H (not shown in the figure) of PQ perpendicularly. Next observe that $\angle APQ = \angle PBQ =$ $\angle PO_2O_1$, and $\angle BPQ = \angle PAQ = \angle PO_1O_2$. Therefore $\angle APB = \angle APQ + \angle BPQ = \angle PO_1O_2$. $\angle PO_2O_1 + \angle PO_1O_2.$

Let $\angle PO_2O_1 = \alpha$ and $\angle PO_1O_2 = \beta$. Then $\sin \alpha = \frac{PQ}{2r_2}$, $\cos \alpha = \frac{O_2H}{r_2}$ and $\sin \beta = \frac{PQ}{2r_1}$, $\cos \beta = \frac{O_1H}{r_1}$. Thus $\sin \angle APB = \sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta = \frac{PQ}{2r_2} \cdot \frac{O_1H}{r_1}$ + .
|
| |
|
| $\frac{O_2H}{r_2} \cdot \frac{PQ}{2r_1} = \frac{PQ \cdot (O_1H + O_2H)}{2r_1r_2} = \frac{PQ \cdot O_1O_2}{2r_1r_2} = \frac{1}{2}$. Since $\angle APB$ is acute, it is equal to 30°. \square

25. Answer. 2

Solution. Let

$$
a_n = \sum_{i=0}^n \binom{n}{i}^{-1}
$$

Assume that $n \geq 3$. It is clear that

hat

$$
a_n = 2 + \sum_{i=1}^{n-1} {n \choose i}^{-1} > 2.
$$

Also note that $% \left\vert \cdot \right\vert$

$$
a_n = 2 + 2/n + \sum_{i=2}^{n-2} \binom{n}{i}^{-1}.
$$

Since $\binom{n}{i} \geq \binom{n}{2}$ for all *i* with $2 \leq i \leq n-2$,

$$
a_n \le 2 + 2/n + (n-3) {n \choose 2}^{-1} \le 2 + 2/n + 2/n = 2 + 4/n.
$$

So we have show that for all $n\geq 3,$

$$
2 < a_n \leq 2 + \frac{4}{n}.
$$

Thus

$$
\lim_{n \to \infty} a_n = 2.
$$

 $\bar{\beta}$

 \bar{z}