Singapore Mathematical Society Singapore Mathematical Olympiad (SMO) 2022 (Open Section, Round 1)

Thursday, 2 June 2022

0930-1200 hrs

Instructions to contestants

- 1. Answer ALL 25 questions.
- 2. Write your answers in the answer sheet provided and shade the appropriate bubbles below your answers.
- 3. No steps are needed to justify your answers.
- 4. Each question carries 1 mark.
- 5. No calculators are allowed.

PLEASE DO NOT TURN OVER UNTIL YOU ARE TOLD TO DO SO

Co-organizer
Department of Mathematics, NUS

Sponsored by Micron

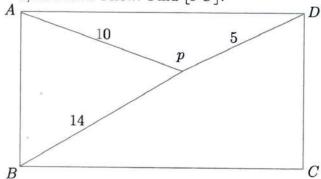
In this paper, let \mathbb{R} denote the set of all real numbers, and $\lfloor x \rfloor$ denote the greatest integer not exceeding x. For examples, $\lfloor 5 \rfloor = 5$, $\lfloor 2.8 \rfloor = 2$, and $\lfloor -2.3 \rfloor = -3$.

1. If
$$S = \sum_{k=-2021}^{2021} \frac{1}{10^k + 1}$$
, find $\lfloor 2S \rfloor$.

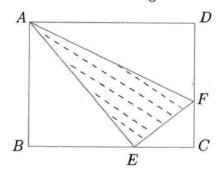
- 2. All the positive integers $1, 2, 3, 4, \dots$, are grouped in the following way: $G_1 = \{1, 2\}$, $G_2 = \{3, 4, 5, 6\}$, $G_3 = \{7, 8, 9, 10, 11, 12, 13, 14\}$, that is, the set G_n contains the next 2^n positive integers listed in ascending order after the set G_{n-1} , n > 1. If S is the sum of all the positive integers from G_1 to G_8 , find $\left\lfloor \frac{S}{100} \right\rfloor$.
- 3. A sequence of one hundred positive integers $x_1, x_2, x_3, \dots, x_{100}$ are such that $(x_1)^2 + (2x_2)^2 + (3x_3)^2 + (4x_4)^2 + \dots + (100x_{100})^2 = 338350.$

Find the largest possible value of $x_1 + x_2 + x_3 + \cdots + x_{100}$.

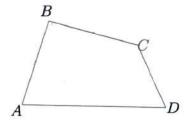
- 4. Let a and b be two real numbers satisfying a < b, and such that for each real number m satisfying a < m < b, the circle $x^2 + (y m)^2 = 25$ meets the parabola $4y = x^2$ at four distinct points in the Cartesian plane. Let S be the maximum possible value of b a. Find $\lfloor 4S \rfloor$.
- 5. Let P be a point within a rectangle ABCD such that PA=10, PB=14 and PD=5, as shown below. Find $\lfloor PC \rfloor$.



6. In the diagram below, the rectangle ABCD has area 180 and both triangles ABE and ADF have areas 60. Find the area of triangle AEF.



- 7. A tetrahedron in \mathbb{R}^3 has one vertex at the origin O and the other vertices at the points A(6,0,0), B(4,2,4) and C(3,2,6). If x is the height of the tetrahedron from O to the plane ABC, find $\lfloor 5x^2 \rfloor$.
- 8. Let x and y be real numbers such that $(x-2)^2 + (y-3)^2 = 4$. If S is the largest possible value of $x^2 + y^2$, find $\lfloor (S-17)^2 \rfloor$.
- 9. Let S be the maximum value of w^3-3w subject to the condition that $w^4+9 \le 10w^2$. Find $\lfloor S \rfloor$.
- 10. In the quadrilateral ABCD below, it is given that AB = BC = CD and $\angle ABC = 80^{\circ}$ and $\angle BCD = 160^{\circ}$. Suppose $\angle ADC = x^{\circ}$. Find the value of x.



- 11. Let a, b, c be integers with ab + c = 49 and a + bc = 50. Find the largest possible value of abc.
- 12. Find the largest possible value of |a| + |b|, where a and b are coprime integers (i.e., a and b are integers which have no common factors larger than 1) such that $\frac{a}{b}$ is a solution of the equation below:

$$\sqrt{4x+5-4\sqrt{x+1}} + \sqrt{x+2-2\sqrt{x+1}} = 1.$$

13. Let S be the set of real solutions (x, y, z) of the following system of equations:

$$\begin{cases} \frac{4x^2}{1+4x^2} = y, \\ \frac{4y^2}{1+4y^2} = z, \\ \frac{4z^2}{1+4z^2} = x. \end{cases}$$

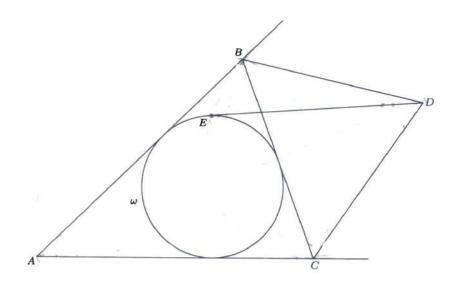
For each $(x, y, z) \in S$, define m(x, y, z) = 2000(|x| + |y| + |z|). Determine the maximum value of m(x, y, z) over all $(x, y, z) \in S$.

14. Assume that t is a positive solution to the equation

$$t = \sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + t}}}}.$$

Determine the value of $t^4 - t^3 - t + 10$.

15. In the triangle ABC shown in the diagram below, the external angle bisectors of $\angle B$ and $\angle C$ meet at the point D. The tangent from D to the incircle ω of the triangle ABC touches ω at E, where E and B are on the same side of the line AD. Suppose $\angle BEC = 112^{\circ}$. Find the size of $\angle A$ in degrees.



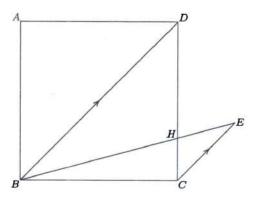
16. Find the largest integer n such that $n^2 + 5n - 9486 = 10s(n)$, where s(n) is the product of all digits of n in the decimal representation of n.

(For example,
$$s(481) = 4 \times 8 \times 1 = 32$$
.)

- 17. Find the number of integer solutions to the equation 19x + 93y = 4xy.
- 18. Find the number of integer solutions to the equation $x_1 + x_2 x_3 = 20$ with $x_1 \ge x_2 \ge x_3 \ge 0$.

4

19. In the diagram below, E is a point outside a square ABCD such that CE is parallel to BD, BE = BD, and BE intersects CD at H. Given $BE = \sqrt{6} + \sqrt{2}$, find the length of DH.



20. The diagram below shows the region $R = \{(x,y) \in \mathbb{R}^2 \mid y \geq \frac{1}{2}x^2\}$ on the xy-plane bounded by the parabola $y = \frac{1}{2}x^2$. Let C_1 be the largest circle lying inside R with its lowest point at the origin. Let C_2 be the largest circle lying inside R and resting on top of C_1 . Find the sum of radii of C_1 and C_2 .

21. Find the smallest positive integer x such that $3x^2 + x = 4y^2 + y$ for some positive integer y.

22. A group of students participate in some sports activities among 6 different types of sports. It is known that for each sports activity there are exactly 100 students in the group participating in it; and the union of all the sports activities participated by any two students is NOT the entire set of 6 sports activities. Determine the minimum number of students in the group.

23. Let p and q be positive prime integers such that $p^3 - 5p^2 - 18p = q^9 - 7q$. Determine the smallest value of p.

5

- 24. Given that a, b, c are positive real numbers such that a+b+c=9, find the maximum value of $a^2b^3c^4$.
- 25. Let \mathbb{R}^+ be the set of all positive real numbers. Let $f:\mathbb{R}^+\to\mathbb{R}^+$ be a function satisfying

$$xyf(x)\left(f(y)-f(yf(x))\right)=1$$

for all
$$x, y \in \mathbb{R}^+$$
. Find $f(\frac{1}{2022})$.