

2015 World Mathematics Team Championship Intermediate Level Team Round Solutions

- **T–1.** Given a rectangle with an area of 910 and both its length and width are integers larger than 20. Find an integer that is closest to the length of its diagonal.
	- **Solution: 44.** Let *a* be the width and *b* be the length of this rectangle. Since both length and width are larger than 20 and $910 = 7 \times 13 \times 2 \times 5$, $a = 26$ and $b = 35$. Hence, the length of its diagonal is $l = \sqrt{a^2 + b^2} = \sqrt{26^2 + 35^2} = \sqrt{1901}$. However, $43^2 = 1849$ and $44^2 = 1936$, $43 < l < 44$. Also, $43.52 = 1892.25$ and $1901 > 1892.25$. Therefore, the integer that is closest to the diagonal's length is 44.
- . **T–2.** Suppose a rectangle has an area of 2016 and both its length and width are integers. Find the perimeter of such rectangle with smallest difference between its length and width.
	- **Solution: 180.** Let $l =$ length and $w =$ width. Then $l \times w = 2016 = 2^5 \times 3^2 \times 7$. Since both *l* and *w* are integers and we are trying to make these two numbers as close as possible, we have $l = 2⁴ \times 3 = 48$ and $w = 2 \times 3 \times 7 = 42$. Therefore, the perimeter is $2 \times (48 + 42) = 180$.

T–3. How many possible pairs of non–zero real numbers *a* and *b* so that there are exactly two different values among the four numbers $a+b$, $a-b$, $a \times b$, and $a \div b$?

Solution: 2. We can consider the following two cases relating to exactly two different values:

(1) These four operations give two sets of identical answers. Consider the followings:

$$
\begin{cases} a+b=a-b, \text{ } \text{ } a+b=a \times b, \text{ } \text{ } \text{ } a+b=a \div b, \text{ } \text{ } \text{ } a \times b=a \div b, \text{ } \text{ } \text{ } a-b=a \div b, \text{ } \text{ } \text{ } a-b=a \times b, \text{ } \text{ } \text{ } a-b=a \times b, \text{ } \text{ } \text{ } \text{ } a \text{ } \text{ } b=a \times b, \text{ } \text{ } \text{ } \text{ } \text{ } a \text{ } \text{ } b=a \times b, \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } a \text{ } \text{ } b \text{ } \text{ } a \text{ } \text{ } b \text{ } \text{ } a \text{ } \text{ } \text{ } b \text{ } \text{ } a \text{
$$

 Ω implies $2b = 0$ or $b = 0$. This contradicts the fact that *b* is non–zero. So $\left\{\n\begin{array}{cc}\n\bullet \\
\bullet\n\end{array}\n\right\}$ does not have non–zero real solutions. , , $a + b = a - b$ $a \times b = a \div b$ $\begin{cases} a+b=a- \end{cases}$ $\big(a \times b = a \div \big)$ $\textcircled{\scriptsize{1}}$ ②

Take
$$
\textcircled{3}\times\textcircled{4}
$$
 (or $\textcircled{5}\times\textcircled{6}$). Then we have $a^2 - b^2 = a^2$. Hence $b = 0$. Contradiction.
Therefore, neither
$$
\begin{cases} a+b = a\times b, \textcircled{3} \\ a-b = a \div b, \textcircled{4} \end{cases}
$$
 nor
$$
\begin{cases} a+b = a \div b, \textcircled{5} \\ a-b = a\times b, \textcircled{6} \end{cases}
$$
 has non-zero real

solutions.

(2) Exactly three of these four operations are the same.

We already know from above that
$$
a+b
$$
 cannot be the same as $a-b$. So, consider $a+b = a \times b = a \div b$, $\textcircled{2}$ or $a-b = a \times b = a \div b$, $\textcircled{3}$
\nFrom $\textcircled{7}$, we have
$$
\begin{cases} a = \frac{1}{2}, \\ b = -1. \end{cases}
$$
 From $\textcircled{8}$, we have
$$
\begin{cases} a = -\frac{1}{2}, \\ b = -1. \end{cases}
$$

Therefore, there are exactly two pairs of (*a, b*) satisfying the problem.

T–4. Given $a > 0$ and $b > 0$. If $a + b = 3$, find the smallest value for $\frac{a^2 + b^2}{b^2 + b^2}$. $^{2}+4$ b^{2} 3 a^2+4 , b *a b* $+4$ +

Solution:
$$
\frac{25}{6}
$$
. From $a+b=3$, we have
$$
\frac{a^2+4}{a} + \frac{b^2}{b+3} = a + \frac{4}{a} + \frac{b^2-9+9}{b+3}
$$

$$
= a + \frac{4}{a} + b - 3 + \frac{9}{b+3}
$$

$$
= \frac{4}{a} + \frac{9}{b+3}
$$

$$
= (\frac{4}{a} + \frac{9}{b+3}) \cdot \frac{a+(b+3)}{6}
$$

$$
= \frac{13}{6} + \frac{2}{3} \cdot \frac{b+3}{a} + \frac{3}{2} \cdot \frac{a}{b+3}
$$

$$
\geq \frac{13}{6} + 2,
$$

$$
= \frac{25}{6}.
$$

Since there is a real solution for *a* in the equation $\frac{a^2+4}{1-a^2}+\frac{b^2}{1-a^2}=\frac{a^2+4}{1-a^2}+\frac{(3-a)^2}{1-a^2}$ 3 *a* $-a+6$ a^2+4 b^2 a^2+4 $(3-a)$ a $b+3$ a $-a$ $\frac{+4}{a} + \frac{b^2}{b+3} = \frac{a^2+4}{a} + \frac{(3-a)^2}{-a+6} = \frac{25}{6},$ the smallest values for $\frac{a^2+4}{1} + \frac{b^2}{1}$ is $\frac{25}{6}$. $=\frac{25}{6}$ 3 a^2+4 , b *a b* $+4$ + 25 6

T–5. Let *I* be the center of the circumcircle of $\triangle ABC$ and $\triangle DEF$ is formed by using the perpendicular bisectors of *IA*, *IB*, and *IC* as its three sides as shown in the figure below. If $IA = 6$ and $S_{\Delta DEF} = 21$, find the perimeter of ΔDEF .

Solution: 14. As shown in the figure below, label the midpoints of *IA*, *IB*, and *IC* as *M*, *N*, and *P*, respectively. Because I is the circumcenter of $\triangle ABC$, $IA = IB = IC$. Also, $IM = IN = IP = \frac{1}{2}IA = 3$ and $IM \perp FD$, $IN \perp DE$, and $IP \perp EF$. So, point *I* is also the 2

center of the inscribed circle of $\triangle DEF$ and $S_{\triangle DEF} = \frac{1}{2} \cdot IM \cdot (FD + DE + EF) = 21$.

Therefore, the perimeter of $\triangle DEF$ is $FD + DE + EF = \frac{21 \times 2}{\sqrt{11}} = 14$ *IM* $+DE + EF = \frac{21 \times 2}{11} = 14$.

T–6. If $x = \sqrt[3]{16} + \sqrt[3]{12} + \sqrt[3]{9}$, find $x - \frac{1}{x^2}$.

Solution: $3\sqrt[3]{12}$. Because $x = \sqrt[3]{16} + \sqrt[3]{12} + \sqrt[3]{9} = (\sqrt[3]{4})^2 + \sqrt[3]{4 \times 3} + (\sqrt[3]{3})^2$ (1) reminded the formula $a^3-b^3 = (a-b)(a^2+ab+b^2)$, so multiply both sides of ① by $(\sqrt[3]{4}-\sqrt[3]{3})$. This will resulted in $x(\sqrt[3]{4}-\sqrt[3]{3})=(\sqrt[3]{4}-\sqrt[3]{3})\cdot(\sqrt[3]{4})^2+\sqrt[3]{4\times3}+(\sqrt[3]{3})^2$ or $x\left(\sqrt[3]{4}-\sqrt[3]{3}\right)=\left(\sqrt[3]{4}\right)^3-\left(\sqrt[3]{3}\right)^3=1$. Hence, $\frac{1}{2} = \sqrt[3]{4} - \sqrt[3]{3}$ or $\frac{1}{2} = (\sqrt[3]{4} - \sqrt[3]{3})^2 = \sqrt[3]{16} - 2\sqrt[3]{12} + \sqrt[3]{9}$. Therefore, $x - \frac{1}{x^2} = \sqrt[3]{16} + \sqrt[3]{12} + \sqrt[3]{9} - (\sqrt[3]{16} - 2\sqrt[3]{12} + \sqrt[3]{9}) = 3\sqrt[3]{12}$. $\frac{1}{x} = \sqrt[3]{4} - \sqrt[3]{3}$ or $\frac{1}{x^2} = (\sqrt[3]{4} - \sqrt[3]{3})^2 = \sqrt[3]{16} - 2\sqrt[3]{12} + \sqrt[3]{3}$ $\frac{1}{2} = (\sqrt[3]{4} - \sqrt[3]{3})^2 = \sqrt[3]{16} - 2\sqrt[3]{12} + \sqrt[3]{9}$ *x* $=\left(\sqrt[3]{4}-\sqrt[3]{3}\right)$ = $\sqrt[3]{16}-2\sqrt[3]{12}$ + $x - \frac{1}{2} = \sqrt[3]{16} + \sqrt[3]{12} + \sqrt[3]{9} - (\sqrt[3]{16} - 2\sqrt[3]{12} + \sqrt[3]{9})$ *x* $-\frac{1}{2} = \sqrt[3]{16} + \sqrt[3]{12} + \sqrt[3]{9} - (\sqrt[3]{16} - 2\sqrt[3]{12} + \sqrt[3]{9}) = 3\sqrt[3]{12}$

T–7. Given a semi–circle *O*. Let *BC* (not its diameter) be a chord and \widehat{BC} be its minor arc. As shown in the figure below, use the chord *BC* as axis of symmetry and fold the minor arc \overline{BC} over until it intersects the diameter AC at point D. If 2 5 $\frac{AD}{AC} = \frac{2}{5}$ and *AC* = 2015, find the length of chord *BC*.

Solution: 806 $\sqrt{5}$. If $AC = 2015$, then $AD = 806$. Let *A'C* be the symmetric image of *AC* around the axis *BC* and *D'* is the intersection point of *A'C* and the semi–circle as shown in the figure below. Connect *AB* and *BA'*. Then *A, B,* and *A'* are collinear and $AB = A'B$, *AD* =*A*′*D*′= 806 and *A*′*C* =*AC* =2015.

Based on Power of a Point or the Secant Theorem, (*A'B*)(*A'A*) = (*A'D'*)(*A'C*) or $(A'B)(2A'B) = 806 \times 2015 = 403^2 \times 10$ which means $A'B^2 = 403^2 \times 5$. Therefore, $BC^2 = A'C^2 - A'B^2 = 2015^2 - 403^2 \times 5 = 403^2 \times (5^2 - 5) = 403^2 \times 20 = 806^2 \times 5$ and $BC = 806\sqrt{5}$.

T-8. Randomly select a positive factor from 6^{2015} . If the probability of this factor happens to be a multiple of 6^{1512} is $\frac{1}{\sqrt{2}}$ where *m* and *n* are relatively primes, find the value of $m - n$. **Solution: 15.** Since $6^{2015} = 2^{2015} \times 3^{2015}$, all positive factors of 6^{2015} are in the form of $2^a\cdot3^b$, $0 \le a, b \le 2015.$ *a b a b* $\begin{cases} 2^a \cdot \\ 0 \cdot \end{cases}$ $\begin{cases} 2 & \text{if } 1 \leq n \leq 2015, \\ 0 \leq a, b \leq 2015. \end{cases}$ Hence, there is a total of 2016×2016 positive factors of 6^{2015} . According to the problem, any number that is a factor of 6^{2015} and a multiple of 6^{1512} should be in the format of $\begin{cases} 6^{1512} \cdot 2^x \cdot 3^y, \end{cases}$ $0 \le x, y \le 2015 - 1512 = 503.$ *x y x y* $\left\{6^{1512}\cdot 2^x\right\}$ $\left(0 \leq x, y \leq 2015 - 1512\right)$ And there are 504×504 of them. Since the probability is $\frac{n}{n} = \frac{504 \times 504}{2015 \times 2015} = \frac{1}{15}$, $m - n = 16 - 1 = 15$. *n m* 2016 2016 16 *n* $\frac{n}{m} = \frac{504 \times 504}{2016 \times 2016} =$

T–9. As shown in the figure below, point *E* is on the extension of rectangle *ABCD*'s diagonal *DB* with *DB* = 2*BE*. Let *F* be the midpoint of *DC* and *EF* intersects *BC* at *G*. If the area of $\triangle AEB$ is 100, find the area of $\triangle BEG$.

Solution: 25. Connect *CE* and *BF* as shown in the figure below.

Because $DB = 2BE$, so $S_{\triangle BEC} = \frac{1}{2} S_{\triangle BCD} = \frac{1}{2} S_{\triangle ABD} = S_{\triangle AEB} = 100$ or $S_{\triangle AEB} = 2S_{\triangle AEB} = 200$. Hence, the area of rectangle *ABCD* is 400. Also, *F* is the midpoint of *DC*, so

$$
S_{\triangle DEF} = S_{\triangle ECF} = \frac{S_{\triangle BCE} + S_{\triangle BCD}}{2} = \frac{100 + 200}{2} = 150 \text{ or } S_{\triangle BEF} = \frac{1}{1 + 2} S_{\triangle DEF} = 50.
$$

So,
$$
\frac{S_{\triangle BEG}}{S_{\triangle BEC}} = \frac{BG}{BC} = \frac{S_{\triangle BEF}}{S_{\triangle BEF} + S_{\triangle ECF}} \text{ or } \frac{S_{\triangle BEG}}{100} = \frac{50}{50 + 150}.
$$
Therefore, $S = 25$.

Therefore, $S_{\triangle BEG} = 25$.

T–10. Let S_m be the area of the triangular region that is enclosed by straight lines *l*₁: $y = mx+2(m-1)$, *l*₂: $y = (m+1)x+2m$, and the *x*-axis where $m = 1, 2, 3, ...$ Find the value of $S_1 + S_2 + S_3 + ... + S_{2015}$.

Solution: $\frac{2015}{1008}$. Combine the two linear equations, we have $\begin{cases} y = mx + 2(m-1) \\ y = (m+1)x + 2m \end{cases}$ $2(m-1),$ $1) x + 2$ $y = mx + 2(m)$ $\begin{cases} y = mx + 2(m-1), \\ y = (m+1)x + 2m \end{cases}$ $y = (m+1)x +$ or 2, 2. *x* $\begin{cases} x = - \\ y = - \end{cases}$ $\begin{cases} x^2 & \text{and} \\ y = -2 \end{cases}$. That means the lines l_1 and l_2 intersect at $(-2, -2)$. Also, because l_1 intersects the *x*-axis at $\left(\frac{2(1-m)}{2}, 0 \right)$, $\left(\frac{2(1-m)}{m},0\right)$, $S_m = \frac{1}{2}\cdot |-2| \cdot \frac{|2(1-m)|}{m} + \frac{2}{m}$ $\binom{m}{2}$ $\binom{2}{1}$ *m* $\binom{m+1}{2}$ $S_m = \frac{1}{2}$. $\left| -2 \right|$. $\left| \frac{2(1-m)}{2(1-m)} \right| + \frac{2m}{2}$ *m m* $=\frac{1}{2}\cdot |-2| \cdot \frac{|2(1-m)|}{2(1-m)} +$ $2.\vert^{1}$ +1 *m m m m* $= 2 \cdot \frac{|1-m|}{|} +$

$$
= 2 \cdot \left| \frac{(1-m)(1+m)+m^2}{m(m+1)} \right|
$$

$$
= \frac{2}{m(m+1)}
$$

$$
= 2 \left(\frac{1}{m} - \frac{1}{m+1} \right).
$$

Therefore, $S_1 + S_2 + S_3 + \dots + S_{2015} = 2(1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{2015} - \frac{1}{2016}) = \frac{2015}{1008}.$

T–11. An inverse proportion function $y = \frac{k}{x}$ has two points *A* and *B* on the First Quadrant. Draw a line segment *AD* that is perpendicular to the *y*–axis at *D* and another segment *BC* that is perpendicular to *x*–axis at *C* as shown in the figure below. If the area of $\triangle OAB$ is $\frac{5}{6}$ and the area of $\triangle OCD$ is $\frac{3}{2}$, find *k*. $\frac{D}{A}$

> **Solution: 2.** As shown in the figure below, extend *DA* and *CB* so they intersect at point *E*. Let $C = (a, 0)$ and $D = (0, b)$. Then $A = (\frac{k}{b})$ *b* , *b*) and $B = (a, \frac{k}{a})$ *a*). According to the

problem,

$$
S_{\Delta OCD} = \frac{1}{2}OC \cdot OD = \frac{1}{2}ab = \frac{3}{2}. \text{ So, } ab = 3. \text{ From the figure, it can be seen that}
$$
\n
$$
S_{\Delta OAB} = S_{ODEC} - S_{\Delta AEB} - S_{\Delta AOD} - S_{\Delta COB}.
$$
\n
$$
S_{ODEC} = ab.
$$
\n
$$
S_{\Delta AOD} = S_{\Delta COB} = \frac{k}{2}.
$$
\n
$$
S_{\Delta AEB} = \frac{1}{2}AE \cdot BE = \frac{1}{2}(a - \frac{k}{b}) \cdot (b - \frac{k}{a}).
$$
\n
$$
S_{\Delta OAB} = ab - \frac{1}{2}(a - \frac{k}{b})(b - \frac{k}{a}) - \frac{k}{2} - \frac{k}{2} = \frac{ab}{2} - \frac{k^2}{2ab} = \frac{5}{6}.
$$
\n
$$
S_{\Delta OAB} = ab - \frac{1}{2}(a - \frac{k}{b})(b - \frac{k}{a}) - \frac{k}{2} - \frac{k}{2} = \frac{ab}{2} - \frac{k^2}{2ab} = \frac{5}{6}.
$$

Since $ab = 3$, $\frac{3}{2} - \frac{k^2}{6} = \frac{5}{6}$ 26 6 $-\frac{k^2}{s} = \frac{5}{s}$ or $k = \pm 2$. However, *A* is in the First Quadrant. Therefore, $k = 2$.

T–12. Suppose the sum of *k* consecutive positive integers is 2015. Find the smallest number among these k numbers.

Solution: 2. Label these *k* consecutive positive integers $a_1, a_1 + 1, a_1 + 2, \dots, a_1 + (k-1)$. There sum is $\frac{a_1 + a_1 + (k-1)}{2} \cdot k = 2015$ or $(2a_1 + k - 1) \cdot k = 4030$ (1) So *k* must be a factor of $4030 = 1 \times 2 \times 5 \times 13 \times 31$ and *k* can only take on values of 1, 2, 5, 10, 13, 26, 31, and 62. We can change ① to $2a_1 - 1 = \frac{4030}{k} - k$ ² So, a_1 decreases as *k* increases. Therefore, a_1 takes on minimum values when $k = 62$ which means that $a_1 \ge \frac{1}{2}(\frac{4030}{62} - 62 + 1) = 2$. $\frac{a_1 + a_1 + (k-1)}{2} \cdot k = 2015$ or $(2a_1 + k-1) \cdot k = 4030$ 2^{\degree} 62 $a_1 \geq \frac{1}{2}(\frac{4030}{62} - 62 + 1) =$

T–13. Suppose *M* is a positive integer and both 8*M*+40 and 8*M*–40 are perfect squares. Find the value of *M*.

Solution: 13. Suppose $8M+40 = m^2$ and $8M-40 = n^2$ where *m* and *n* are positive integers and $m > n$. Subtract these two equations and we have

- $m^2 n^2 = (m+n)(m-n) = 80 = 2^4 \times 5$. Therefore, m^2 and n^2 are both multiples of 8 and *m* and *n* are both multiples of 4. Also, $m+n > m-n > 0$, so both $m+n$ and $m-n$ are multiple of 4. Therefore, $m+n = 20$ and $m-n=4$ or $m=12$ and $n=8$. So, $M=13$.
- **T–14.** Consider the figure below. Suppose the inscribed circle of △*ABC* has a radius of 2. Let *M* and *N* be points on *AB* and *BC* so that they are the intersections of the line that passes through the center and parallel to *AC*. If $MN = 7$ and $AM = 4$, find the area of the trapezoid *AMNC*.

Solution: $14 + 2\sqrt{3} + \sqrt{5}$. Let *O* be the center of inscribed circle of $\triangle ABC$ and points *D*, *E*, and *F* are the points of tangency as shown in the figure below. Connect *OD*, *OE*, and *OF*. From points *M* and *N* draw $MG \perp AC$ at G and $NH \perp AC$ at H.

Since MN / AC , $\angle A = \angle DMN$ and $MG = OF = OD$. Hence, $MG = 2$. Also, $\angle MGA = \angle MDO = 90^\circ$, so $\triangle AMG \cong \triangle MOD$ or $AM = MO = 4$. Similarly, $NC = ON = MN - MO = 3$. Since $\triangle AMG$ is a right triangle, $AG = \sqrt{AM^2 - MG^2} = \sqrt{4^2 - 2^2} = 2\sqrt{3}$. \triangle *CHN* is also a right triangle, so $HC = \sqrt{NC^2 - NH^2} = \sqrt{3^2 - 2^2} = \sqrt{5}$. That means, $AC = AG + GH + HC = 2\sqrt{3} + 7 + \sqrt{5}$. Therefore, $S_{AMNC} = \frac{1}{2} \cdot (MN + AC) \cdot OF = \frac{1}{2} \times (7 + 7 + 2\sqrt{3} + \sqrt{5}) \times 2 = 14 + 2\sqrt{3} + \sqrt{5}$.

T–15. Suppose the equation $ax^2 + bx + c = 0$ has real solutions and its coefficients *a, b,* and *c* satisfy the following conditions:

- (1*) a, b*, and *c* are positive integers;
- (2) The 6-digit number $a2015b$ is divisible by 12;
- (3) c^3+3 is divisible by $c+3$.

Find the maximum value for $a+b+c$.

Solution: 16. In order for equation $y = ax^2 + bx + c$ to have real solution,

 $b^2 - 4ac \ge 0$ or $ac \le \frac{b^2}{a}$. 1 4 $ac ≤ \frac{b}{c}$

Let $M = a2015b$. Since M is divisible by 12, M is also divisible by 3 and 4.

(1) M is divisible by 4: Then the last two digits of M 5*b* is divisible by 4. So, $b = 2$ or 6. When $b = 2$, ① implies $ac \leq \frac{b^2}{1} = 1$, so $a = c = 1$ since a and c are positive integers. However, in this case, the 6–digit number 1 4 $ac \leq \frac{b^2}{4}$

 $a 2015b = 120152$ which cannot be divisible by 3. So, *b* must be 6 which means *ac* ≤ 9 (2)

- (2) M is divisible by 3: Then the sum of all the digits of M is $a+2+0+1+5+b = a+8+6 = a+14$ which is divisible by 3. So, $a = 1, 4$, or 7. (3) Since c^3+3 is divisible by $c+3$ and $c^{3} + 3 = (c^{3} + 3^{3}) - 24 = (c + 3)(c^{2} - 3c + 9) - 24$, 24 is divisible by $c+3$ as well. Hence, $c = 1, 3, 5, 9,$ or 21. $\qquad \qquad (4)$
	- Combining \bigcirc \bigcirc \bigcirc \bigcirc , we have $c = 1, 3, 5$, or 9 when $a = 1$ and $b = 6$. In this case, the value of $a+b+c$ is 8, 10, 12, or 16. However, when $a = 4$ and $b = 6$, so $c=1$ and $a+b+c=11$.

And when $a = 7$ and $b = 6$, $c = 1$ and $a+b+c = 14$.

Therefore, among all the values for $a+b+c$ from above, the largest is $a+b+c=16$.

T–16. As shown in the figure below, a ray of light enters from point *A* of a 4×*m* grid graph. This ray will reflect whenever it hits the sides *AB, BC, CD*, or *AD*. However, if would leave the graph when it hits the corner points *A*, *B*, *C*, or *D*. Suppose this ray of light enters from A and passes through 2016 grid points (including points *A* and *D* and each point would only count once) and then leave the graph at point *D*. Find *m*.

Solution: 1344. As shown in the figure below, because of the property related to the reflection of rays of light, on the side *BC*, it is only possible for this ray to pass through points *B*, *C*, or *G* which is the midpoint of *BC*. However, this ray cannot pass through B and C since it would leave the graph is it passes through those two points.

 Hence, this ray will reflect on *G*. Observe the pattern on how this ray passes through the grid points, these grid points must be on *AB*, *CD*, or *EG* and also passes through the same number of grid points on each segment. Since this ray passes through 2016 grid points, it passes through $2016 \div 3 = 672$ grid points on *AB*. Therefore, $m = 672 \times 2 = 1344$.

T–17. If positive integers *x* and *y* satisfy the equation $x^3 + 5x^2y + 8xy^2 + 6y^3 = 91$, find the value of *x+y*.

Solution: 3. . 32 2 3 *x x y xy y* +++ 586 32 2 2 23 =+ + + + + (4 3)(5 6) *x x y xy x y xy y* 2 22 2 = ++ + ++ *x x xy y y x xy y* (4 3) (5 6) = + ++ + *xx y x y yx y x y* (3)() (3)(+2) 2 2 =+ + + (3)(2 2) *x y x xy y*

- Since *x* and *y* are positive integers, so $x + 3y > 1$ and $x^2 + 2xy + 2y^2 > 1$. Also, 91=7×13, so $\begin{cases} x^{2} - 2x + 2y^{2} - 12 \end{cases}$ (1) or $\begin{cases} x^{2} + 2xy + 2y^{2} + y^{2} \end{cases}$ (2) Since $x^2 + 2xy + 2y^2 = 13$ and $4^2 > 13$, $2 \times 3^2 > 13$, so $x \le 3$, $y \le 2$. Hence, $y = 1$ or 2. Substitute *y* = 1 into *x*+3*y* = 7. Then *x* = 4. This contradicts the fact that *x* ≤ 3. Substitute $y = 2$ into $x+3y = 7$. Then $x = 1$. Therefore, the solution for is $x = 1$ and $y = 2$. Similarly, use the same reasoning to analyze $\circled{2}$, $\circled{2}$ has no solution. Therefore, $x+y=3$. $3y = 7$, $2xy + 2y^2 = 13$, $x + 3y$ $\begin{cases}\nx+3y = \\
x^2 + 2xy + 2y\n\end{cases}$ $x^2+2xy+2y^2=$ $x^2 + 2xy + 2y^2 = 7$, $3y = 13$, $x^2 + 2xy + 2y$ $x + 3y$ $\int x^2 + 2xy + 2y^2 =$ $\begin{cases} x + 3y = 0 \end{cases}$
- **T–18.** Suppose a circle of radius 1 that is the inscribed circle of a regular hexagon and also the circumcircle of a square. Let *a* and *b* be the edge lengths of the hexagon and square, respectively. If the line $y = -\frac{b}{x}x + \frac{a}{x}$ forms a triangle with *x*– and *y*– *b a* $y = -\frac{b}{a}x + \frac{a}{b}$

axes and the inscribed circle of this triangle has a radius of *r*, find the value of $\frac{1}{n}$. *r*

Solution: $\frac{3+\sqrt{6}+\sqrt{15}}{2}$ 2 $\frac{+\sqrt{6} + \sqrt{15}}{2}$. As shown in the figure below, since *a* is the edge length of the hexagon, $\angle AO'B = 360^{\circ} \div 6 = 60^{\circ}$ or $\angle AO'C = 60^{\circ} \div 2 = 30^{\circ}$.

Because $\triangle AO'B$ is an equilateral triangle, so $a = \frac{2}{3}\sqrt{3}$. 3 $a =$

Also, $b = \sqrt{1^2 + 1^2} = \sqrt{2}$. Hence, $y = -\frac{b}{x} + \frac{a}{x} = -\frac{\sqrt{6}}{2}x + \frac{\sqrt{6}}{2}$ 2 3 $b = \sqrt{1^2 + 1^2} = \sqrt{2}$. Hence, $y = -\frac{b}{a}x + \frac{a}{b} = -\frac{\sqrt{6}}{2}x + \frac{\sqrt{6}}{3}$ and its intersects with the

coordinate axes are $M(0, \frac{\sqrt{6}}{2})$ and $N(\frac{2}{3}, 0)$. Therefore, 3 2 3

$$
MN = \sqrt{\left(\frac{\sqrt{6}}{3}\right)^2 + \left(\frac{2}{3}\right)^2} = \frac{\sqrt{10}}{3}.
$$

Because $\triangle MON$ is a right triangle and r is the radius of the inscribed circle of this triangle, so $OM \cdot ON = r(OM + ON + MN)$ or

$$
\frac{1}{r} = \frac{OM + ON + MN}{OM \cdot ON} = \frac{\frac{\sqrt{6}}{3} + \frac{2}{3} + \frac{\sqrt{10}}{3}}{\frac{\sqrt{6}}{3} \times \frac{2}{3}} = \frac{3 + \sqrt{6} + \sqrt{15}}{2}.
$$

T–19. Consider the figure below. Given three points $A(-3,0)$, $B(\sqrt{3},0)$, and $C(0,-3)$. How many possible points $E(x, y)$ (where $0 < y < 4$) that will make $\triangle ABE$ similar to $\triangle ABC$?

Solution: 4. Based on the coordinates of points *A*, *B*, and *C*, it is easy to see that $AB = 3 + \sqrt{3}$, ∠*CAB* = 45°, and ∠*ABC* = 60°. So, ∠*ACB* = 75°. To make $\triangle ABE$ similar to $\triangle ABC$, the three interior angles of $\triangle ABE$ must be also 45°, 60°, and 75°. (1) As shown in the figure on the right, pick a point E_1 so that $\angle E_1AB = 60^\circ$

and $\angle E_1BA = 45^\circ$. Drop a perpendicular line from E_1 so it

would intersect the *x*-axis at F_1 . Then $AF_1 = \frac{\sqrt{3}}{2} E_1 F_1$ 3 $AF_1 = \frac{\sqrt{3}}{2} E_1 F_1$ and

$$
F_1B = E_1F_1
$$
. Since $AF_1 + F_1B = AB$, $\frac{\sqrt{3}}{3}y_1 + y_1 = 3 + \sqrt{3}$ or
 $y_1 = 3 < 4$.

Similarly, pick a point E_2 so that $\angle E_2AB=45^\circ$ and $\angle E_2BA=$

60°.

Drop a perpendicular line from E_2 and go through the same kind analysis as above, we would find that $y_2 = 3 < 4$.

Therefore, both E_1 and E_2 satisfy our conditions.

(2) As shown in the left figure below, pick a point E_3 so that $\angle E_3AB = 75^\circ$ and ∠*E*₃*BA* = 45°. Locate a point *M* on *E*₃*B* so that *AM* ⊥*E*₃*B* and drop a

perpendicular line from E_3 so it would intersect the *x*–axis at F_2 . Then

$$
AM = BM = \frac{\sqrt{2}}{2} AB,
$$

\n
$$
EM = \frac{\sqrt{2}}{2} \left(3 + \sqrt{3}\right),
$$

\n
$$
E_3M = \frac{\sqrt{3}}{3} AM, \text{ and } E_3F_2 = \frac{\sqrt{2}}{2} E_3B. \text{ So,}
$$

\n
$$
E_3M = \frac{\sqrt{2}}{2} \left(1 + \sqrt{3}\right), \text{ and}
$$

 $E_3 B = BM + E_3 M = \sqrt{2(2 + \sqrt{3})}$. In this case, $y = E_3 F_2 = 2 + \sqrt{3} < 4$.

Similarly, pick a point *E*₄ so that ∠*E*₄*AB* = 45° and ∠*E*₄*BA* = 75°. Go through the

same kind of analysis as above, we would find that $y = 2 + \sqrt{3} < 4$. Therefore, both E_3 and E_4 satisfy our conditions.

(3) As shown in the right figure below, pick a point E_5 so that $\angle E_5AB = 75^\circ$ and ∠*E*₅*BA* = 60°. Locate a point *N* on *E*₅*B* so that $AN \perp E_5B$ and drop a

perpendicular line from E_5 so it would intersect the *x*–axis at F_3 . Then $BN = \frac{1}{2}AB$,

$$
E_s N = AN = \frac{\sqrt{3}}{2} AB
$$
, and $E_s F_s = \frac{\sqrt{3}}{2} E_s B$. So, $BN = \frac{1}{2} (3 + \sqrt{3})$ and
 $E_s N = AN = \frac{\sqrt{3}}{2} (3 + \sqrt{3})$. In this case,

$$
y = E_5 F_3 = \frac{\sqrt{3}}{2} E_5 B = \frac{\sqrt{3}}{2} (E_5 N + B N) = \frac{6 + 3\sqrt{3}}{2} > 4.
$$

Similarly, pick a point E_6 so that $\angle E_6AB = 60^\circ$ and $\angle E_6BA = 75^\circ$. Go through the same kind of analysis as above and we would find that $y = \frac{6 + 3\sqrt{3}}{2} > 4$ 2 $\frac{+3\sqrt{3}}{2} > 4.$ Therefore, E_5 and E_6 do not satisfy our conditions.

(1), (2), and (3) show that there are four possible points *E* that satisfy $0 < y < 4$.

 \blacktriangleright

 $\pmb{\lambda}$

T–20. As shown in the figure below, point *B* is the midpoint of arc , point *E* is on the chord AC , and F is on arc . If arc , , and the radius of the circle for the arc is , find the length of *EF*.

Solution: $\frac{\sqrt{11} - \sqrt{3}}{2}$ 2 $-\sqrt{3}$. As shown in the figure below, let *O* be the center of the circle for AC .

Connect *OA*, *OB*, and *OF*. Let *D* be the intersection of *OB* and *AC* and let *G* be the point on the extension of *FE* so that $BO \perp GO$. Because *B* is the midpoint of arc AC and arc $AC = 120^{\circ}$, so the radius *OB* is the perpendicular bisector of chord *AC* and $\angle AOD = 60^\circ$. Also, the radius of the circle for arc AC is $\sqrt{3}$ which means $OA = \sqrt{3}$. Because $\triangle ADO$ is a 30–60 right triangle with hypotenuse $OA = \sqrt{3}$, so $OD = \frac{\sqrt{3}}{2}$ and $AD = \frac{3}{2}$. Therefore, $BD = OB - OD = \frac{3}{2}$. Also, since $\triangle ABE$ is a right triangle, $BD^2 = AD \cdot DE$ or $DE = \frac{BD}{AD} = \frac{2}{2} = \frac{1}{2}$. 2 3 2 3 2 $\frac{3}{2}$. Also, since Δ 2 1 2 3 2 2 $(\frac{\sqrt{3}}{2})^2$ $=\frac{DD}{1}=-\frac{2}{2}=$ $\left(\frac{\mathbf{v} \cdot \mathbf{v}}{2}\right)^2$ *AD* $DE = \frac{BD}{dt}$

Now, since quadrilateral DEGO is a rectangle, so ∠*OGF*=90°,*OG*=*DE*,and *EG*=*DO*. In right triangle $\triangle FOG$, $FG = \sqrt{OF^2 - OG^2} = \sqrt{OF^2 - DE^2} = \sqrt{(\sqrt{3})^2 - (\frac{1}{2})^2} = \frac{\sqrt{11}}{2}$. Therefore, $EF = FG - EG = FG - OD = \frac{\sqrt{11}}{2} - \frac{\sqrt{5}}{2} = \frac{\sqrt{11}}{2}$. $=\sqrt{(\sqrt{3})^2-(\frac{1}{2})^2}=\frac{\sqrt{11}}{2}$ 2 3 $=\frac{\sqrt{11}}{2}-\frac{\sqrt{3}}{2}=\frac{\sqrt{11}-\sqrt{3}}{2}$