Singapore Mathematical Society

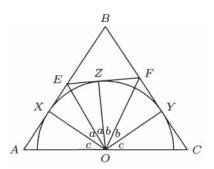
Singapore Mathematical Olympiad (SMO) 2009

(Open Section, Round 2 solutions)

1. The figure shows half of the rhombus (which is an isosceles triangle), where X, Y, Z are points of tangency of the circle to the sides AB, CB and EF respectively. Note that

$$\angle XOE = \angle EOZ$$
, $\angle ZOF = \angle FOY$, $\angle AOX = \angle COY$.

In particular, $a + b + c = 90^{\circ}$.



Thus

$$\angle AEO = 90^{\circ} - a = b + c = \angle COF.$$

Hence the triangles AOE and CFO are similar. It follows that $AE \cdot CF = AO^2$. Similarly, on the lower half of the rhombus, $AO^2 = AH \cdot CG$. Then AE/AH = CG/CF and hence the triangles AEH and CGF are similar. Thus $\angle AEH = \angle CGF$. Since AB is parallel to CD, it follows that EH is parallel to FG.

2. Let $a_i = 18 + 19i$. We'll show that there are infinitely many i such that a_i consists of only the digit 1, i.e.

$$a_i = 18 + 19i = \frac{10^k - 1}{9}.$$

This yields $10^k \equiv 11 \pmod{19}$. Thus any positive integer of the form $\frac{10^k-1}{9}$, where $10^k \equiv 11 \pmod{19}$ is in the AP. Since $10^6 \equiv 11$ and $10^{18} \equiv 1 \pmod{19}$, we have $10^{18t+6} \equiv 11 \pmod{19}$ for any t. Thus there are infinitely many palindromic numbers.

3. We have

$$(n+2)A_{n+1} - nA_n = 2(n+1)^{2k}$$
$$(n+1)A_n - (n-1)A_{n-1} = 2(n)^{2k}$$

From these we get

$$(n+1)(n+2)A_{n+1} - n(n+1)A_n = 2(n+1)^{2k+1}$$

$$n(n+1)A_n - (n-1)nA_{n-1} = 2(n)^{2k+1}$$

$$(n+1)(n+2)A_{n+1} - (n-1)nA_{n-1} = 2(n+1)^{2k+1} + 2(n)^{2k+1}$$

Using this recurrence, we obtain

$$A_n = \frac{2S(n)}{n(n+1)}$$
 where $S(n) = 1^t + 2^t + \dots + n^t$, $t = 2k+1$.

Since

$$2S(n) = \sum_{i=0}^{n} ((n-i)^{t} + i^{t}) = \sum_{i=1}^{n} ((n+1-i)^{t} + i^{t})$$

we see that $n(n+1) \mid 2S(n)$. Thus A_n is an integer for all n.

- (i) $n \equiv 1$ or $2 \pmod{4}$. Then S(n) is odd since it has an odd number of odd terms. Thus A_n is odd.
 - (ii) $n \equiv 0 \pmod{4}$. Then $(n/2)^t \equiv 0 \pmod{n}$. Thus

$$S(n) = \sum_{i=0}^{n/2} ((n-i)^t + i^t) - \left(\frac{n}{2}\right)^t \equiv 0 \pmod{n}.$$

Thus A_n is even.

(iii)
$$n \equiv 3 \pmod{4}$$
. Then $((n+1)/2)^t \equiv 0 \pmod{n+1}$. Thus

$$S(n) = \sum_{i=1}^{(n+1)/2} \left((n+1-i)^t + i^t \right) - \left(\frac{n+1}{2} \right)^t \equiv 0 \pmod{n+1}.$$

Thus A_n is even.

4. First note that

$$x_1^3 + x_3^3 + 3x_1x_3 - 1 = x_1^3 + x_3^3 - (1)^3 - 3x_1x_3(-1)$$

$$= (x_1 + x_3 - 1)((x_1 + x_3)^2 + (x_1 + x_3) + 1) - 3x_1x_3(x_1 + x_3 - 1)$$

$$= (x_1 + x_3 - 1)[(x_1 - x_3)^2 + (x_1 + 1)(x_3 + 1)].$$

It is equal to zero only when either $x_1 + x_3 = 1$ or $x_1 = x_3 = -1$. Thus we must have $x_1 + x_3 = 1$ as they are positive. It now suffixes to show that the following is sharp:

$$\sum_{i=1}^{2} \left(y_i + \frac{1}{y_i} \right)^3 \ge 125/4 \text{ when } y_1 + y_2 = 1 \text{ and } y_1, y_2 > 0.$$

To this end, it is clear that the function $f(x) = (x + 1/x)^3$ is convex. Thus,

$$f(x) + f(1-x) \ge 2f(1/2) = 125/4.$$

5. The only solution is (x, y, z) = (2, 3, 5).

First of all, observe that (x,y) = (x,z) = (y,z) = 1. Then $2 \le x < y < z$, and combining the three given congruences we can express it as

$$xy + xz + yz - 1 \equiv 0 \pmod{x, y, z}$$
.

Since x, y and z are pairwise coprime, we have

$$xy + xz + yz - 1 \equiv 0 \pmod{xyz}$$
.

It follows that xy + xz + yz - 1 = k(xyz) for some integer $k \ge 1$. Dividing by xyz, we obtain that

$$\frac{1}{z} + \frac{1}{y} + \frac{1}{x} = \frac{1}{xyz} + k > 1.$$

Since x < y < z, it follows that

$$1 < \frac{1}{x} + \frac{1}{y} + \frac{1}{z} < \frac{3}{x}$$

and this gives x = 2 as the only value. In this case, the inequalities give

$$\frac{1}{2} < \frac{1}{y} + \frac{1}{z} < \frac{2}{y},$$

which implies that y = 3. It follows that the only possible values of z are 4 and 5. Hence, for $2 \le x < y < z$, the solutions are (x, y, z) = (2, 3, 4) and (2, 3, 5). Since 2 and 4 are not relatively prime, the only solution is (x, y, z) = (2, 3, 5).