Singapore Mathematical Society

Singapore Mathematical Olympiad (SMO) 2007

(Open Section, Round 2 Solutions)

1. Without loss of generality, we may assume that all the a_i are positive, else we just change the sign of x_i . Since

$$\left(\frac{\sum_{i=1}^n a_i}{n}\right)^2 \le \frac{\sum_{i=1}^n a_i^2}{n},$$

we have $\sum_{i=1}^n a_i \leq \sqrt{n}$. There are k^n integer sequences (t_1,t_2,\ldots,t_n) satisfying $0 \leq t_i \leq k-1$ and for each such sequence we have $0 \leq \sum_{i=1}^n a_i t_i \leq (k-1)\sqrt{n}$. Now divide the interval $[0,(k-1)\sqrt{n}]$ into k^n-1 equal parts. By the pigeonhole principle, there must exist 2 nonnegative sequences (y_1,y_2,\ldots,y_n) and (z_1,z_2,\ldots,z_n) such that $\left|\sum_{i=1}^n a_i y_i - \sum_{i=1}^n a_i z_i\right| \leq \frac{(k-1)\sqrt{n}}{k^n-1}$. Set $x_i = y_i - z_i$ to satisfy the condition.

2. Suppose to the contrary that $(x-a_1)(x-a_2)\cdots(x-a_n)-1=f(x)g(x)$ for some polynomials f(x) and g(x) with integer coefficients and $\deg(f(x)), \deg(g(x)) \geq 1$. Then $f(a_i)g(a_i)=-1$ for $i=1,2,\ldots,n$ implies that $f(a_i)=1$ and $g(a_i)=-1$ or $f(a_i)=-1$ and $g(a_i)=1$. Therefore, if we set h(x)=f(x)+g(x), then $h(a_i)=0$ for all $i=1,2,\ldots,n$. As $\deg(h(x))\leq \max(\deg(f(x)),\deg(g(x)))< n$, the polynomial equation h(x)=0 cannot have n distinct roots. It follows that h(x) must be the zero polynomial. Thus f(x)=-g(x), and therefore

$$(x-a_1)(x-a_2)\dots(x-a_n)-1=-(g(x))^2\leq 0$$

for all real values of x. But this leads to a contradiction since we can choose a value for x large enough so that $(x - a_1)(x - a_2) \dots (x - a_n) - 1$ is positive.

2nd solution: We start off as in the first solution. Then instead of defining h(x), we proceed as follows. Let $f(a_i) = 1$, $1 \le i \le k$ and $f(a_i) = -1$, $k+1 \le i \le n$. Then, $g(a_i) = -1$, $1 \le i \le k$ and $g(a_i) = 1$, $k+1 \le i \le n$. Therefore $\deg(f(x)-1) = \deg f(x) \ge \max(k,n-k) \ge \frac{k+(n-k)}{2} = \frac{n}{2}$. Similarly $\deg g(x) \ge \frac{n}{2}$. However $\deg f(x) + \deg g(x) = n$, and thus n is even with $\deg f(x) = \deg g(x) = k = \frac{n}{2}$. Thus $f(x) - 1 = b_1(x-a_1)(x-a_2)\cdots(x-a_k)$, and $g(x) + 1 = b_2(x-a_1)(x-a_2)\cdots(x-a_k)$ for some $b_1, b_2 \in \mathbb{Z}$. Together we get $f(x)g(x) + f(x) - g(x) - 1 = b_1b_2[(x-a_1)(x-a_2)\cdots(x-a_k)]^2$. By comparing coefficient of the x^n term, $b_1b_2 = 1$. This give us f(x) - 1 = g(x) + 1. Similarly, we have f(x) + 1 = g(x) - 1, a contradiction.

3. Let the point of contact of the two circles be P. First we show that A_1 , P and B_2 are collinear. Let the common tangent at P meet CA at D and CB at E. Let $\angle ABC = b = \angle CAB = \angle A_1CB_1$, $\angle ACB = c$, $\angle A_1CP = x$ and $\angle B_1CP = y$. Then x + y = b and $2b + c = 180^\circ$. We have $\angle PB_1A = x$, $\angle B_1PE = y$. Therefore, by considering PB_1BE , $\angle BEP = 2x$. Hence $\angle EPB_2 = x$ and consequently, $\angle B_1PB_2 = x + y = b$. This implies that A_1 , P and B_2 are collinear. Similarly A_2 , P and B_1 are collinear. Then $\triangle A_1BC \sim \triangle A_1CB_1$, and $\triangle CAB_1 \sim \triangle A_1CB_1$, whence $\triangle A_1BC \sim \triangle CAB_1$. Thus $AC/AB_1 = A_1B/BC$ and $ACAB_1 = A_1B + A_2B_1$, since AC = BC. Also $ACAB_1 \sim ACAB_1B_2$. Thus $ACAB_1 = ABAB_1AA_2 = BBAB_1A_1B_2$ and whence $AA_2^2 = A_1B \cdot AB_1$. Thus B is the midpoint of AB_2 . Since $AB \parallel A_2B_2$, we have $AB_2 = 2AB$ as required.

2nd solution: Let Γ_1 be the circumcircle of $\triangle A_1B_1C$ and its centre be O_1 , let the other circle Γ_2 has center O_2 , and the point of contact of the two circles be P. Now since CA_2 and CB_2 are tangent to Γ_2 , we have $CA_2 = CB_2$. Together with CA = CB, we have $AA_2 = BB_2$. This implies that $\triangle CAB \sim \triangle CA_2B_2$ and $AB \parallel A_2B_2$. Now $\angle A_2O_2B_2 = 180^\circ - \angle ACB = 2\angle CAB = 2\angle A_1CB_1 = \angle A_1O_1B_1$. Thus, isosceles triangles $A_1O_1B_1$ and $A_2O_2B_2$ are similar. Since $AB \parallel A_2B_2$, $A_1O_1 \parallel O_2B_2$, also note that O_1PO_2 is a straight line. Therefore, we have $2\angle A_1B_1P = \angle A_1O_1P = \angle PO_2B_2 = 2\angle PA_2B_2$. This implies that B_1PA_2 is a straight line. Similarly, A_1PB_2 is a straight line. Now we let Γ_1 intersects CA and CB at D and E respectively, and let DA_1 intersects EB_1 at G. By Pascal's Theorem on Γ_1 and the hexagons CEB_1PA_1D , we have A_2 , G and B_2 collinear. Using the fact that $\triangle ACB_1 \sim \triangle CA_1B_1 \sim B_1A_1C$, we have $\angle GA_1B_1 = \angle DA_1A = \angle DCB_1 = \angle CA_1B_1$. Similarly, $\angle GB_1A_1 = \angle CB_1A_1$. This implies that G is the image of C under reflection of line AB. Since G is on A_2B_2 , A_2B_2 is twice as far as AB from C. Thus, $A_2B_2 = 2AB$.

3rd solution: Let Γ_1 be the circumcircle of $\triangle A_1B_1C$ and its centre be O_1 , let the other circle Γ_2 has center O_2 . Now since CA_2 and CB_2 are tangent to Γ_2 , we have $CA_2 = CB_2$. This implies that $\triangle CAB \sim \triangle CA_2B_2$. Let us perform inversion with center C and radius CA. Let the image of A_1, A_2, B_1, B_2 under this inversion be A'_1, A'_2, B'_1, B'_2 respectively. A, B and C remain invariant. The inversion keeps every line that passes through C invariant. Now the image of the line AA_1B_1B is the circumcircle of $\triangle CAB$, let it be Γ_3 , and the image of Γ_1 is the line A_1B_1 . Thus the image of Γ_2 is tangent to A_1B_1 , AC and BC and is thus the incircle of $\triangle ABC$ and touches the sides AC and BC at A'_2 and B'_2 , respectively. Thus $\frac{CA'_2}{CA} = \frac{CB'_2}{CB} = \frac{1}{2}$, which implies that $\frac{CA_2}{CA} = \frac{CB_2}{CB} = 2$. Hence A and B are the midpoints of A_2C and B_2C , respectively. Thus $A_2B_2 = 2AB$.

4. We show that f is the identity function. First we observe that f is an injective function:

$$f(m) = f(n) \implies f(m) + f(n) = f(n) + f(n)$$

$$\Rightarrow f(f(m) + f(n)) = f(f(n) + f(n))$$

$$\Rightarrow m + n = n + n$$

$$\Rightarrow m = n$$

Let k > 1 be arbitrary. From the original equation, we have the equations

$$f(f(k+1)+f(k-1)) = (k+1)+(k-1) = 2k$$
, and $f(f(k)+f(k)) = k+k = 2k$.

Since f is injective, we have

$$f(k+1) + f(k-1) = f(k) + f(k)$$
 or $f(k+1) - f(k) = f(k) - f(k-1)$.

This characterizes f as an arithmetic progression, so we may write f(n) = b + (n-1)t where b = f(1) and t is the common difference. The original equation becomes b + [(b + (m-1)t) + (b + (n-1)t) - 1]t = m + n, which simplifies to (3b-2t-1) + (m+n)t = m+n. Comparing coefficients, we conclude that t=1 and b=1. Thus f(n)=n, as claimed. Clearly, this function satisfies the original functional equation.

5. The answer is x = 420.

Let p_1, p_2, p_3, \ldots be all the primes arranged in increasing order. By Bertrand's Postulate, we have $p_i < p_{i+1} < 2p_i$ for all $i \in \mathbb{N}$, thus we have $p_{k+1} < 2p_k < 4p_{k-1} < 8p_{k-2}$ which implies that $64p_kp_{k-1}p_{k-2} > p_{k+1}^3$.

Let $p_k \leq \sqrt[3]{x} < p_{k+1}$ for some $k \in \mathbb{N}$. Note that $p_i \mid x$ for i = 1, 2, ..., k. Suppose $k \geq 5$, then $\sqrt[3]{x} \geq p_5 = 11$. Since $11 > 2^3$ and $11 > 3^2$, we have $2^3 3^2 \mid x$. Since $k \geq 5$, $\gcd(p_k p_{k-1} p_{k-2}, 2^3 3^2) = 1$ and thus $2^3 3^2 p_k p_{k-1} p_{k-2} \mid x$. This means we have $x \geq 72 p_k p_{k-1} p_{k-2} > 64 p_k p_{k-1} p_{k-2} > p_{k+1}^3$, implying $p_{k+1} < \sqrt[3]{x}$, which is a contradiction. Thus k < 5 and consequently, $\sqrt[3]{x} < 11$ or x < 1331.

Next. we notice that the integer 420 is divisible by all positive integers $\leq \sqrt[3]{420}$, thus $x \geq 420 \Rightarrow \sqrt[3]{x} > 7$. It then follows that x is divisible by $2^2 \cdot 3 \cdot 5 \cdot 7 = 420$.

Finally, suppose $\sqrt[3]{x} \ge 9$. We then have $2^3 \cdot 3^2 \cdot 5 \cdot 7 \mid x$, i.e., $x \ge 2^3 \cdot 3^2 \cdot 5 \cdot 7 = 2520$, which is a contradiction since x < 1331. Thus $\sqrt[3]{x} < 9$.= or x < 729. Since $420 \mid x$ and x < 729, we have x = 420.

Alternatively, since x < 1331 and $420 \mid x$, we only need to check the cases x = 420, 840, 1260.